ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

546

15-95-177

На правах рукописи

ТОНЧЕВ Антон Пенев

ВОЗБУЖДЕНИЕ ИЗОМЕРНЫХ СОСТОЯНИЙ В ФОТОЯДЕРНЫХ РЕАКЦИЯХ В ОБЛАСТИ ГИГАНТСКОГО ДИПОЛЬНОГО РЕЗОНАНСА

Специальность: 01.04.16 — физика атомного ядра и элементарных частиц

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Дубна 1995

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Работа выполнена в Лаборатории ядерных реакций имени Г.Н. Флерова Объединенного института ядерных исследований, Дубна

научный руководитель:

доктор физико-матсматических наук, профессор ГАНГРСКИЙ Ю.П.

ОФИЦИАЛЬНЫЕ ОППОНЕНТЫ: доктор физико-математических наук, профессор КАПИТОНОВ И.М.;

> доктор физико-математических наук МАЛОВ Л.А.

ВЕДУЩАЯ ОРГАНИЗАЦИЯ: Российская академия наук, Институт ядерных исследований, Москва

Защита диссертации состоится "____" 1995 гола в " час. на заседании специализированного совста Д 047.01.05 при Лаборатории нейтронной физики и Лаборатории ядерных реакций Объединенного института ядерных исследований, г. Дубна, Московская обл.

С диссертацией можно ознакомиться в библиотске ОИЯИ.

Автореферат разослан "___" 1995 года.

Ученый секретарь и диссертационного совста кандидат физико-математических наук:

Попеко А.Г.

Актуальность проблемы.

Фотоядерные реакции (ФЯР) с образованием конечного ядра в изомерных состояниях становятся одним из перспективных методов получения новой информации как о механизме этих реакций, так и о структуре уровней, через которые происходит заселение изомерных состояний. Нередко такой источник сведений является единственным, т.к. эти уровни обычно не проявляются при β-распаде, а в ядерных реакциях их трудно выделить из массы остальных уровней. Эти сведения получают при измерении выходов ядер в изомерных состояниях, а также изомерных отношений (ИО). Из вероятности заселения изомера можно судить о свойствах состояний, через которые происходит заселение изомеров: о распределении их плотности по энергии и по спину, а также о вероятностях радиационных переходов между ними. ФЯР являются наиболее удобными для этого, т.к. из-за отсуствия кулоновского барьера и энергии связи для у-квантов, можно получать возбужденные ядра как в области выше нуклонного порога, так и ниже его.

В настоящее время накоплен большой объем экспериментальных результатов по исследованию изомерных состояний в ФЯР. Однако большинство этих данных разрознены и не имеют целенаправленного характера. Поэтому детальное изучение процесса возбуждения изомерных состояний, а также зависимости его вероятности от различных ядерных параметров и характеристик ядерной реакции представляет важное значение.

Накопление более полной экспериментальной информации о структуре этих состояний является основой для проверки и развития различных теоретических моделей.

> Sancaur alles and anteropy GREADERS HCCLEADERBER **EMENHOTENA**

Цель работы:

- 1. Расчет спектров тормозного излучения при различных значениях энергий падающих электронов, угла наблюдения, толщины и материала мишени.
- Разработка относительного метода измерения выходов изомерных состояний и их функций возбуждения в области гигантского дипольного резонанса.
- 3. Изучение механизма возбуждения и распада высокоспиновых изомеров ^{180m}Hf, ^{180m}Ta, ^{190m}Os и ^{204m}Pb в реакциях неупругого рассеяния γ-квантов.
- Исследование особенностей возбуждения изомерных состояний h_{11/2} (50 ≤ N ≤ 82) в ФЯР с вылетом одного нейтрона в области гигантского дипольного резонанса. Изучение зависимостей ИО от энергии возбуждения, массового числа нуклидов, разницы в спинах изомерного и основного состояний.
- 5. Изучение влияния оболочечной структуры осколков деления на формирование их углового момента.

Научная новизна:

- 1. Впервые измерены выходы и получены сечения неупругого рассеяния γквантов для высокоспиновых изомеров ^{180m}Hf, ^{190m}Os и ^{204m}Pb ниже нуклонного порога.
- 2. Впервые на высокоспиновой мишени ^{180m}Та в области нуклонного порога наблюдалась реакция неупругого рассеяния электронов.
- 3. Впервые в области гигантского дипольного резонанса измерены функции возбуждения реакций (γ,n) на изотопах ^{130,132,134,136}Ва и ¹³⁸Се.
- Впервые измерены ИО для изотопов ^{118,124}Sn, ^{122,124,130}Te, ^{138,140}Ce, в (γ,n) реакциях при максимальной энергии γ-квантов E_γ = 25 MэB.

5. В реакции фотоделения ²³²Th измерено ИО осколка деления ¹³⁴I и с помощью формализма Юзенги и Ванденбоша расчитан его угловой момент.

Практическая ценность работы:

- 1. Разработанный метод расчета тормозного излучения может быть использован на любых электронных ускорителях в области энергии до 30 МэВ с целью проведения абсолютных измерений выходов ФЯР.
- 2. Некоторые исследования в области ниже нуклонного порога имеют важный астрофизический аспект.
- 3. Результаты исследований изомерных состояний могут быть использованы в гамма-активационном анализе.

На защиту выносятся следующие положения:

- Расчет спектра тормозного излучения γ-квантов в области энергии от 1 до 30 МэВ для различных углов наблюдения, толщин и материалов мишени.
- Исследование реакций (γ,γ') в области энергий 5 9 МэВ, приводящих к образованию высокоспиновых изомеров, которые относятся к трем областям ядер - сильнодеформированным - ^{180m}Hf, переходным - ^{190m}Os и сферическим - ^{204m}Pb.
- 3. На высокоспиновой изомерной мишени ^{180m}Та измерение сечения девозбуждения изомера при переходе с изомерного 9⁻ на 1⁺ основное состояние.
- 4. Измерения ИО для реакции (γ, п) для широкого круга ядер (46≤ Z ≤ 64 и 50
 ≤ N ≤ 82) в области гигантского дипольного резонанса. Получение зависимости ИО от энергии возбуждения, массового числа и атомного номера пуклидов.

5. Измерение ИО в осколке деления ¹³⁴I с целью изучения влияния оболочечной структуры на формирование углового момента осколков деления.

Аппробация работы:

Материалы, послужившие основой данной диссертации докладывались на международных конференциях и совещаниях:

- 1. International Workshop on "Dynamical Aspects of Nuclear Fission", Smolenice, CSFR (1991).
- 2. 41-е Международное совещание "Ядерная спектроскопия и структура атомного ядра", 1991, Минск, СССР.
- 3. The International Symposium on fundamental investigations with electron accelerators, Plovdiv (1992).
- 4. 44-е Международное совещание "Ядерная спектроскопия и структура атомного ядра" 17-20 мая, 1994, Санкт-Петербург, Россия.
- 5. VI International Conference on Selected Topics in Nuclear Structure, July 5-9,1994, Dubna, Russia.

Структура и объем работы

Диссертация состоит из введения, четырех глав, заключения и списка литературы. Она содержит 86 страниц машинописного текста, включая в себя 27 рисунков, 10 таблиц и список литературы из 83 наименований.

СОДЕРЖАНИЕ РАБОТЫ

Во Введении обосновывается актуальность темы диссертации, формулируются основные цели исследования и определяется круг решаемых задач.

Первая глава носит методический характер и касается вопросов, связанных с относительными измерениями выходов и сечений изомерных состояний в условиях работы на тормозном излучении.

Описана методика расчета спектра тормозного излучения из толстой мишени под различными углами. Максимум тормозного излучения вперед соответствует толщине мишени \cong 0.3 рад. длины. Спектр излучения из такой мишени нельзя считать эквивалентным обычно используемому Шиффовскому спектру для "тонких" мишеней и требует специальных расчетов. Поэтому нами был проведен теоретический расчет спектров из мишеней различной толщины и под различными углами наблюдения в интересующем нас диапазоне энергий электронов 5-30 МэВ [1].

Предполагая, что "элементарный" спектр излучения, т.е. спектр излучения электрона при одном акте рассеяния, известен, суммируются спектры тормозного излучения из всей мишени с учетом рассеяния электронов, поглощения излучения в материале мишени, вероятности испускания фотонов под заданным углом, а также потерь энергии электронами и их поглощения. Рассчитанные нами спектры хорошо совпадают с имеющимися экспериментальными данными в диапазоне энергий 1-30 МэВ.

Рассмотрен относительный метод определения выходов фотоядерных реакций, применение которого является наиболее эффективным, когда исследуемые и мониторные сечения измеряются одновременно. При определении выходов исследуемых реакций отпадает необходимость в мониторировании пучка γквантов. Эффективность этого метода при исследовании ФЯР под действием γквантов тормозного излучения обусловливается тем, что при его применении извлекается информация одновременно о разных каналах взаимодействия.

Рассматривается и вопрос о математическом методе определения сечений реакции по результатам измерения интегральных выходов фотоядерных реакций. В задаче определения сечений фотоядерных реакций по данным о выходе появляется необходимость решать интегральное уравнение I рода. Для решения этого вопроса нами был использован модифицированный метод минимизации направленного расхождения, предложенный В.Е. Жучко. Одно из основных преимуществ этого метода - положительность решения во всем диапазоне энергий.

Во второй главе представлены экспериментальные результаты исследования реакций (γ,γ'), в области энергий 5-9 МэВ, приводящих к образованию высокоспиновых изомеров в четно-четных ядрах, которые относятся к трем областям - сильнодеформированным - ^{180m}Hf, переходным - ^{190m}Os и сферическим - ^{204m}Pb [2].

Большой интерес к исследованию изомерных состояний в (γ , γ') реакциях связанны с тем фактом, что из-за отсутствия кулоновского барьера и энергии связи для γ -квантов, можно получать возбужденные ядра в области ниже энергии связи нейтрона. Такие особености заселения высокоспиновых изомеров в реакциях (γ , γ') приводят к тому, что изомерные отношения оказываются очень чувствительными к параметрам плотности уровней и вероятностям радиационных переходов.

В деформированных ядрах причиной изомерии и запрета для у-переходов может являтся не только большая разница спинов изомерного и основного состояний, но и их проскций на ось симметрии ядра (квантовое число K). Яркими примерами К - изомера служить ¹⁸⁰Нf и ¹⁹⁰Os.

На рис.1 показаны полученные зависимости сечений и изомерных

Рис.1. Функции возбуждения исследуемых реакций

6

отношений от энергии ү-квантов. Функции возбуждения исследуемых реакций имеют резонансную форму и их максимумы в пределах точности измерения совпадают с порогом B_n реакций (ү,n) [2].

Выходы этих трех высокоспиновых изомеров контрастируют с интегральным ^{180т}Та при сечением, полученным на высокоспиновой изомерной мишени неупругом рассеянием у-квантов вблизи нейтронного порога. Эксперименты неупругому рассеянию у-квантов и электронов на ^{180m}Ta [3] указали на его по необычно большое интегральное сечение. Если сравнить это сечение с сечением возбуждения для ¹⁸⁰Hf, то оно оказывается на четыре порядка выше. В табл. 1 представлены интегральные сечения для ¹⁸⁰Нf и 180 Та при двух энергиях у-квантов. По-видимому, большая разница в спинах для ¹⁸⁰Та не является препятствием для его девозбуждения. Это сечение имеет самое большое значение для (у, у') реакций, "связывающих" основное и изомерное состояния ниже порога вылета нейтрона.

Изомерное состояние ¹⁸⁰Нf распадается через одночастичные состояния основной вращательной полосы ($K^{\pi} = 0$). В случае ¹⁸⁰Ta, по-видимому, имеет место другая схема девозбуждения. При дипольном поглощении γ -квантов с

Таблица 1. Интегральные сечения ^{180m}Нf и ^{180m}Та при двух энергиях уквантов

Ε _γ , ΜэΒ	σ (γ,γ'), мбарн.кэВ	
	$\mathrm{Hf}(\ 0^{+} \Rightarrow 8^{-})$	Ta($9^- \Rightarrow 1^+$)
6.5	0.015 (5)	380 (80)
7.0	0.055 (10)	450 (90)

изомерного состояния 9⁻ возбуждаются состояния со спином и четностью 8^+ , 9⁺ и 10⁺. Эги состояния находятся при энергии возбуждения 6.5 - 7 МэВ. Прямой переход с этих состояний на основное 1⁺ состояние маловероятен из за большой разницы в спинах - $\Delta J > 7$. Поэтому более вероятны М1 и Е2 переходы на основную ротационную полосу с $K^{\pi} = 1^{+}$. Однако, в этом случае возникает большой запрет по квантовому числу т.к. $\Delta K=8$. Из экспериментальных данных известно, что в нечетных ядрах даже при довольно низких энергиях возбуждения плотность уровней большая и возможно смешивание по квантовому числу К. Таким образом снимается запрет по К и после этого возможен переход с состояний 8^+ , 9^+ и 10^+ (K^{π} =9°) на 7⁺ ,8⁺ и 9⁺ (K^{π} =1⁺). Далее происходит обычный каскад на основную полосу, ведущий к основному состоянию 1⁺ (К^{*}=1⁺). Такие переходы из возбуждаемых состояний 8^+ , 9^+ , 10^+ возможны и на другие полосы с $K^{\pi}=1$. $K^{\pi}=3^{-}$ и $K^{\pi}=4^{-}$. В случае ¹⁸⁰Нf такие переходы на полосу, построенную на изомерном состоянии невозможны, из-за сильного различия по спину уровней ротационной полосы и возбуждаемых после захвата у-квантов уровней.

В третьей главе представлены экспериментальные результаты по исследованиям изомерных состояний $h_{11/2}$ в ФЯР с вылетом одного нейтрона для широкого круга изотопов с $50 \le N \le 82$ и $46 \le Z \le 62$. Для всех исследуемых ядер выбрано изомерное состояние с одним и тем же спином и четностью $11/2^{-}$, а участвующие в реакции изотопы являются четно-четными, которые после поглощения γ -кванта имеют спин 1⁻. Таким образом, для возбуждения изомерных сотояний во всех изучаемых изотопах выбраны идентичные условия - одинаковый тип реакции и энергия возбуждения, одни и те же спины начального и конечного состояний. Поэтому можно ожидать, что изменения измерясмых на опыте изомерных отношений при переходе от одного ядра к

другому, будут определятся тем, как в этих ядрах меняется структура уровней, через которые происходит заселение изомерного состояния. Полученные экспериментальные данные позволяют судить как о статистических свойствах этих уровней (о зависимости их плотности от энергии и спина), так и об их спектроскопических характеристиках - спинах, четностях, вероятностях переходов различной мультипольности в изомерное состояние.

В зависимости ИО от массового числа наблюдалось несколько изотопных зависимостей. На изотопах Ва получена зависимость ИО от энергии у-квантов и массового числа изотопа [4]. На рис. 2 представлена зависимость ИО от энергии у-излучения (для дифференциальных сечений) и от граничной энергии тормозного излучения (для интегральных сечений). В последнем случае ИО соответствуют отношениям изомеренных выходов реакций, приводящих к изомерному и основному состояниям, т.к. обе реакции имеют близкие по форме функции возбуждения. Это указывает на одинаковый механизм заселения изомерного и основного состояний - эмисия нейтронов из состояний гигантского дипольного резонанса на уровни с энергией возбуждения несколько МэВ, а затем каскад у-квантов. ИО в реакциях (у,n) на изотопах Ва обнаруживают зависимость от энергии у-квантов и массового числа изотопа. ИО растут с уменьшением числа нейтронов в ядре. Оно максимально для наиболее легкого изотопа ¹²⁹Ва.

Зависимость ИО для изотопов Те при максимальной энергии γ -квантов , E_{γ} =25 МэВ увеличивается с увеличением числа нейтронов в ядре, и самое большое ИО имеет ¹²⁹ Те. Это ИО представляет и самое большое значение из всех исследуемых нами нейтронных состояний h_{11/2}.

Интересно посмотреть и на изотонную зависимость ИО (рис.3). В этом

Рис.2. Зависимость изомерных отношении для различных изотопов бария от энергии γ-квантов. Значки (^{129m}Ba • ,^{131m}Ba ■ ,^{133m}Ba ▲ , ^{135m}Ba • и ^{137m}Ba +) относится к интегральным сечений, сплошная кривая - отношения дифференциальных сечений для ^{129m}Ba и ^{129g}Ba.

отношении благоприятной группой ядер являются изотопы, имеющие замкнутые нейтронные оболочки (N = 82) как 138 Ba, 140 Ce, 142 Nd и 144 Sm. B (γ ,n) реакциях на этих ядрах возбуждаются состояния, имеющие одинаковые спины и четности в изомерном и основном состояниях и приблизительно одинаковые коэффициенты квадрупольной деформации в основном состоянии.

ИО имеет максимум в районе ¹⁴⁰Сс и ¹³⁸Ва. Эта зависимость уменышается с приближением к "замкнутой" протонной оболочке Z = 64. По-видимому аналогичная ситуация будет наблюдаться и с левой стороны этой зависимости при приближении к другой замкнутой протонной оболочке Z=50.

Результаты измерений ИО для состояний $h_{11/2}$, образующихся в реакциях (γ ,n) на 16 четных ядрах при максимальной энергии γ -квантов $E_{\gamma} = 25$ МэВ представлены на рис.4 [5,6]. Для самых легких и самых тяжелых ядер, которые соответствует началу и концу "острова" изомерии этих состояний, ИО, а вместе с ними и интегральные сечения наиболее низкие. Максимальные значения ИО имеют изотопы Sn и Te.

Таким образом, на ИО влияет целый ряд факторов: значения спинов изомерного и основного состояний, энергия связи нейтрона в начальном и конечном ядре, зависимость плотности уровней конечного ядра от энергии и спина, структура уровней выше изомерного состояния.

Энергия возбуждения ядра перед каскадом ү-квантов зависит от энергии связи нейтрона. Поэтому в области гигантского дипольного резонанса, энергия возбуждения ядра после вылста нейтрона будет меньше для легких изотопов. Эго приводит к меньшему интервалу энергии для каскада ү-квантов и, следовательно, к уменьшению ИО. Однако при больших энергиях ү-квантов влияние этого фактора будет слабее.

Плотность уровней и распределение их по спину в конечном ядре оказывают существенное влияние на ИО. С увеличением параметров, определяющих зависимость плотности уровней от энергии возбуждения и спина ядра ИО растет.

12

Оба эти параметра растут с увеличением деформации ядра, что имеет место при уменьшении числа нейтронов в ядре.

И, наконец, спектр дискретных уровней над изомерным состоянием и вероятности переходов между ними определяют в конечном счете ИО. Однако данные о характеристиках этих уровней в исследованных изотопах далеко не полные.

В четвертой главе описаны измерения изомерного отношения для осколков деления и метод определения их угловых моментов. Относительное заселение основного и изомерных состояний с различными спинами зависит от первоначального распределения по спинам осколков. На рис. 5 показаны угловые моменты ¹³⁴I при делении ядер изотопов ²³²Th(γ ,f) и ²³⁸U(γ ,f) как функция числа нейтронов в допольнительном ему осколке N_c [7]. Предполагается что энергия возбуждения этих нуклидов почти одинакова и что среднее число мгновенных нейтронов, испущенных из осколка с массой 135, приблизительно равно 1, т.е. значения N_c для делящихся нуклидов ²³²Th и ²³⁸U \cong 60 и 65 соответственно.

Так как ¹³⁴I является ядром, близким к дважды "магическому" (Z \approx 50, N \approx 82), форма которого мало отличается от сферы, дополнительный к нему осколок (нейтроноизбыточные изотопы Rb и Y) обладает значительной деформацией. Энергия деформации в дальнейшем преобразуется в энергию возбуждения осколков. Угловой момент фрагмента уменьшается с увеличением N_c, приближаясь к деформированной оболочке с 66 нейтронами. Поэтому, дополнительный к ¹³⁵I фрагмент становится более деформированным, начиная от фотоделения ²³²Th вплоть до ²³⁸U.

Рис.5. Зависимость углового момента ¹³⁴I от числа нейтронов в дополнительном ему осколке

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ДИССЕРТАЦИИ

- Расчитаны спектры тормозного излучения из толстых мишеней в области энергии от 1 до 30 МэВ для различных углов наблюдения и материала мишени.
- Впервые измерены выходы и получены ссчения неупругого рассеяния γквантов для высокоспиновых изомеров ^{180m}Hf, ^{190m}Os и ^{204m}Pb. Показан большой вклад квадрупольных переходов в каскаде γ-квантов при заселении изомерного состояния.
- На высокоспиновой изомерной мишени ^{180m}Та получен аномально большой выход основного состояния при неупругом расссянии у-квантов и электронов.

Наблюдалось слабое влияние квантового числа К в механизме девозбуждения этого состояния.

- 4. Впервые в области Гигантского дипольного резонанса измерены функции возбуждения реакций (γ,n) на изотопах ^{130,132,134,136}Ва и ¹³⁸Се. Впервые измерены ИО для изотопов ^{118,124}Sn, ^{122,124,130}Te, ^{138,140}Ce, в (γ,n) реакциях при максимальной энергии γ-квантов E_γ = 25 МэВ.
- Исследованы особенности возбуждения изомерных состояний h_{11/2} (46 ≤ Z ≤ 64 и 50 ≤ N ≤ 82) в (γ,n) реакциях области Гигантского дипольного резонанса. Получена зависимость ИО от энергии возбуждения, массового числа и атомного номера нуклидов.
- 6. Определены независимые выходы осколка деления ¹³⁴I в основном и изомерном состояниях и расчитан его угловой момент при фотоделении ²³²Th и ²³⁸U у-квантами с максимальной энергией 25 Мэв.

Основные результаты работы диссертации опубликованы в следующих работах:

이 이 아이는 아이와 아이는 것

- Kondev Ph.G., Tonchev A.P., Khristov Kh.G. and Zhuchko V.E. Calculation of bremsstrahlung spectra from a thick tungsten radiator as a function of photon energy and angle. // Nucl. Instruments and Methods in Physics Research B. 1992. Vol.71. p.126-13
- 2. Balabanov N.P., Belov A.G., Gangrsky Yu.P., Kondev F.G., Tonchev A.P. Excitation of the high-spin isomers ^{180m}Hf, ^{190m}Os, ^{204m}Pb in (γ,γ') reactions: Preprint JINR E15-93-370, Dubna, 1993.
- Белов А.Г., Гангрски Ю.П., Зузаан Н., Тончев А.П., Выход ¹⁸⁰Та в (ү,ү') и (е,е') реакциях: 45-е Международное совещание "Ядерная спектроскопия и структура атомного ядра" 1995, Санкт-Петербург, Россия.

- Tonchev A.P., Gangrsky Yu.P., Belov A.G., Balabanov N.P., Hristov H.G. Measurement of the isomer ratio in (γ,n) reaction for the barium isotopes in the giant dipole resonance region: Preprint JINR E15-95-91, Dubna, 1995.; Ядерная Физика, 1996, т.60, N.2.
- Тончев А.П., Гангрский Ю.П., Балабанов Н.П., Белов А.Г. Возбуждение изомерных состояний h_{11/2} в фотоядерных реакциях.: 45-е Международное совещание "Ядерная спектроскопия и сгруктура атомного ядра" 1995, Санкт-Петербург, Россия.
- Belov A.G., Gangrsky Yu.P., Tonchev A.P., Balabanov N.P. Photoactivation of isomer ^{137m}Ce in the region of Giant Dipole Resonance. Workshop on application of microtrons in nuclear physics. Plovdiv, 22-24 September, 1992, p. 106-108.
- 7. Tonchev A.P., Kondev Ph.G., Gangrsky Yu.P., Balabanov N.P., Hristov H.G. Isomeric yield ratio of ¹³⁴I in photofission of ²³²Th and ²³⁸U, // J.Radioanal.Nucl.Chem., Letters 1991. Vol.155(5). p.299-309.

Рукопись поступила в издательский отдел 19 апреля 1995 года.

17