71860

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

F - 831 15-2006-1

На правах рукописи УДК 539.172.14: 539.172.015

C 3439

ГРИГОРЕНКО Леонид Валентинович

ИССЛЕДОВАНИЕ КОРРЕЛЯЦИЙ В СПЕКТРЕ СВЕРХТЯЖЕЛОГО ВОДОРОДА ⁵Н

Специальность: 01.04.16 — физика атомного ядра и элементарных частиц

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Работа выполнена в Лаборатории ядерных реакций им. Г.Н. Флерова Объединенного института ядерных исследований.

Научный руководитель:

кандидат физико-математических наук, старший научный сотрудник М.С. Головков

Официальные оппоненты:

доктор физико-математических наук, профессор С.Н. Ершов

доктор физико-математических наук Ю.М. Чувильский

٩

Ведущее предприятие

НИИ физики им. В.А. Фока, Санкт-Петербургский университет

Защита диссертации состоится «______ 2006 года в «_____» часов на заседании диссертационного совета Д 720.001.06 при Лаборатории нейтронной физики им. И.М. Франка и Лаборатории ядерных реакций им. Г.Н. Флерова Объединенного института ядерных исследований (г. Дубна, Московская обл.).

С диссертацией можно ознакомиться в библиотеке ОИЯИ.

Автореферат разослан «____»____2006 года.

Ученый секретарь диссертационного совета

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

<u>Актуальность проблемы.</u> Экспериментальная часть данной работы была выполнена в Лаборатории Ядерных Реакций им. Г.Н. Флерова ОИЯИ в рамках исследований свойств ядер вблизи границы ядерной стабильности. Проведённый анализ и интерпретация экспериментальных данных в определённой степени базируются на теоретических результатах, полученных в Техническом Университете Чалмерса (Гётеборг, Швеция), Университете Суррея (Гилфорд, Великобритания) и научном центре GSI (Дармштадт, Германия).

Свойства «сильно асимметричной» ядерной материи являются на сегодняшний день проблемой, далёкой от окончательной ясности. Понимание свойств таких систем, как сверхтяжёлые изотопы водорода ${}^{4}\text{H}{-}^{7}\text{H}$ может стать важным этапом в развитии этой области ядерной науки. Интерес к сверхтяжёлым водородам и формулировки соответствующих проблем существуют уже давно. Однако, несмотря на почти сорокалетнюю историю исследований, на сегодняшний день экспериментальные данные о свойствах этих изотопов зачастую противоречивы. Не является исключением и случай изотопа ${}^{5}\text{H}$.

С конца 60-х годов поиск изотопа ⁵Н не дал убедительных результатов. С конца 90-х годов интерес к этой теме переживает «ренессанс», связанный с быстрым развитием техники экспериментов на пучках радиоактивных ядер. В последние годы в нескольких научных центрах был проведён ряд экспериментов «нового поколения» (регистрация нескольких продуктов реакции с высоким аксептансом), давших, к сожалению, противоречивые результаты. Возникла необходимость как в понимании возможных физических причин возникших трудностей, так и в формулировке экспериментальных задач, решение которых позволило бы их преодолеть.

<u>Целью работ</u>, вошедших в диссертацию, является изучение непрерывного спектра ⁵Н для разрешения существующей противоречивой ситуации с положением состояний в нём. В связи с этим в диссертационной работе <u>ставятся и решаются</u>

следующие задачи:

Объединенный институт ядерных меследований ВИБЛИЮТЕКА

Coece А.Г. Попеко

- Система ⁵Н исследуется теоретически в трёхчастичной t+n+n модели. Рассматриваются свойства основного 1/2⁺ состояния и дублета 5/2⁺ – 3/2⁺ нижних возбуждённых состояний. Демонстрируется, что т.к. все состояния в спектре ⁵Н достаточно широкие, наблюдаемые свойства системы могут сильно зависеть от механизма реакции и для надёжного заключения о положении основного состояния ⁵Н и необходимы детальные корреляционные измерения.
- Проводятся экспериментальные исследования реакции передачи двух нейтронов ³H(t,p)⁵H на первичном пучке тритонов с энергией 57.7 МэВ с использованием жидкой тритиевой мишени. Рассматриваются события в которых ядера отдачи (протоны) вылетают под малым углом в направлении назад. Восстанавливается полная кинематическая картина реакции; спектр энергии ⁵H и корреляционные спектры для продуктов его распада получаются из регистрации тройных p-t-n и четверных p-t-n-n совпадений.
- Развивается формализм для анализа корреляционных экспериментальных данных из распадов выстроенных трёхчастичных систем со спином.
 Разрабатывается методика корректного введения поправок на эффективность регистрации, с полноценным учётом корреляционной картины распада изучаемой системы.
- На основе полученного формализма анализируются данные из реакции ³H(t,p)⁵H. Результаты анализа экспериментальных данных выражаются в аналитическом виде, не требующем при дальнейшем «использовании» (например, при сравнении с теорией) знания особенностей экспериментальной установки. Показывается, что в этой реакции заселяется в основном низколежащий дублет 5/2⁺ 3/2⁺. На основе анализа интерференционной картины устанавливается, что основное 1/2⁺ состояние ⁵Н находится при энергин ~1.8 МэВ

Научная новизна работ, вошедших в диссертацию, заключается в следующем:

 Впервые в эксперименте энергетический спектр ⁵Н был был измерен до 5 МэВ с высокой статистикой и разрешением, что сделало возможным детальный корреляционный анализ. Была наблюдена весьма сложная корреляционная картина.

- 2. Анализ корреляций позволил выделить из непрерывного спектра вклад состояний с разными J^я. Используемый при этом метод аналогичен классическому корреляционному методу определения углового момента ядерно-нестабильного состояния, заселяемого в реакции с «нулевой геометрией» или в прямой реакции. Однако, мы впервые демонстрируем применимость и эффективность этого метода в приложении к системе, распадающейся в непрерывный спектр трёх тел.
- 3. Многомерные корреляционные экспериментальные данные представлены в виде разложений по аналитическим функциям с учётом искажений, связанных с работой детекторной системы. Различные аспекты такого анализа встречались и ранее, но полноценное рассмотрение столь сложной корреляционной картины проделано впервые.
- Положение основного состояния ⁵Н определяется как ~1.8 МэВ с высокой степенью надёжности. Эту часть проблемы ⁵Н можно считать, таким образом, закрытой.

Практическая ценность.

ç

- В данной работе широкие перекрывающиеся состояния в непрерывном спектре трёхчастичной системы идентифицируются по корреляциям в определённой координатной системе. Такая возможность во многом связана с выбором геометрии («нулевая геометрия») и особенностями механизма реакции («прямая передача»). Применение разработанного метода, таким образом, не ограничивается системой ⁵Н. Вблизи и за границами нейтронной и протонной стабильности заселение непрерывного спектра трёх и более тел является скорее рядовым явлением, чем экзотикой. Наличие здесь общего метода, позволяющего при определённых условиях определять спины состояний является весьма ценным.
- В современной ядерной физике становится существенной проблема «невоспроизводимости» экспериментальных данных. Она состоит в том, что для сложных процессов, дающих несколько частиц в конечном состоянии,

2

многие экспериментальные данные представляются в таком виде, что прямое сравнение с ними не возможно вследствие сложных поправок, вносимых аксептансом и эффективностью детекторных систем. Требуется доступ к програмам-симуляторам экспериментальных установок. Такая ситуация методически неудовлетворительна. В данной работе многомерные корреляционные экспериментальные данные «очищены» (насколько это возможно) от искажений, связанных с работой детекторной системы и представлены в виде аналитических выражений, что делает возможным их дальнейшее независимое использование.

Апробация работы. Результаты диссертационной работы были представлены на следующих совещаниях и конференциях:

- Международная конференция 3rd International Conference on Exotic Nuclei and Atomic Masses, ENAM 2001 (2 – 8 июля 2001 г., Хэмеенлинна, Финляндия).
- Международная конференция Joint Study Weekend HALO'2002 (14 16 июня 2002 г., Chalmers University of Technology, Гётеборг, Швеция).
- VIII Международная конференция Nucleus Nucleus Collisions (Москва, Россия, 17-21 июля 2003 г.)
- Международная конференция International Nuclear Physics Conference INPC 2004 (27 июня – 2 июля 2004 г., Гётеборг, Швеция)
- Международный симпозиум EXON-2004 (5 12 июля 2004 г., Петергоф, Россия)

Публикации. По результатам исследований, составивших основу диссертации, опубликовано 5 работ. Результаты, вошедшие в эти работы, были получены автором в период 1999 – 2005 гг.

Структура и объем диссертации. Диссертационная работа состоит из введения, пяти глав, заключения и изложена на 71 странице машинописного текста, включая 25 рисунков, 5 таблиц и список литературы из 57 наименований.

СОДЕРЖАНИЕ РАБОТЫ

Первая глава представляет собой введение, где обоснована актуальность поставленных задач, содержится обзор экспериментальных данных по теме диссертации, и сформулирована цель работы.

В таблице 1 приводятся экспериментальных данные по основному состоянию ⁵Н. Результаты даже недавних экспериментов находятся в противоречии друг с другом.

Таблица 1. Параметры основного состояния ⁵Н, полученные в различных работах.

Работа	<i>E</i> _т (МэВ)	Г (МэВ)	Метод
[Ade67]	> 2.1		³ He(³ He,n) ⁵ Be
[You68]	. 2.15	1.5	³ H(t,p) ⁵ H
[Gor91]	7.4 ± 0.7	8	9 Be(π , pt or dd) ⁵ H
[Ale95]	5.2 ± 0.4	4	⁷ Li(⁶ Li, ⁸ B) ⁵ H
[Kor01]	1.7 ± 0.3	1.9 ± 0.4	p(⁶ He,2p) ⁵ H
[Gor03]	5.5 ± 0.2	5.4 ± 0.5	9 Be(π ,pt or dd) ⁵ H
[Gol03]	1.8 ± 0.1	< 0.5	³ H(t,p) ⁵ H
[Mei03]	3	6	¹² C(⁶ He, ⁵ H)X

[Ade67] - E.G. Adelberger et al., Phys. Lett. B25 (1967) 595.

[You68] - P.G. Young et al., Phys. Rev. 173 (1968) 949.

[Gor91] - M.G. Gornov et al., Nucl. Phys. A531 (1991) 613.

[Ale95] - D.V. Aleksandrov et al.,, Proc. Int. Conf. on Exotic Nucl. and At. Masses, Arles, France, June 19-23, (1995) 329.

[Kor01] - A.A. Korsheninnikov et al., Phys. Rev. Lett. 87 (2001) 092501.

[Gor03] - M.G. Gornov et al., JETP Lett. 77 (2003) 344.

[Gol03] - M.S. Golovkov et al., Phys. Lett. B566 (2003) 70.

[Mei03] - M. Meister et al., Nucl. Phys. A723 (2003) 13; Phys. Rev. Lett. 91 (2003) 162504.

Во второй главе кратко рассматривается текущее состояние теоретических исследований ⁵Н и приводятся результаты ⁵Н расчётов в рамках трёхчастичной t+n+n модели основанной на методе гиперсферических гармоник (ГГ). Сверхтяжёлый водород ⁵Н относится к так называемым «демократическим» распадчикам – системам, для описания которых требуется привлечение теоретического аппарата теории нескольких тел. Понятие демократического распада было введено в конце 80-х гг. для описания наблюдаемых распадных

ł

свойств состояний ⁶Ве. Демократичность определяется энергетическими условиями распада (недоступность последовательной бинарной моды распада через промежуточные стационарные или квазистационарные состояния).

Таблица 2. Параметры низколежащих состояний ⁵Н, полученные в различных теоретических подходах (МО – модель оболочек, МРГ – метод резонирующих групп,

МГК – метол генераторных	координат). Е	Зсе величины	даны в	WI3D.
THE MERCHANNEL .	•			

19

17

Работа	Метод	$J^{\pi} = 1/2^+$		$J^{\pi} = 3/2^{+}$		$J^{\pi} = 5/2^{\tau}$	
		ET	Г	ET	. Г	Eτ	Г
[Bev81]	, MO	5.5					
[Pop85]	MO			10.5		7.4	
[Gor89]	ГГ 5 тел		:			6	~6
[Fil99]	МРГ	~6	>4	n an			
Работа 1	ГГ 3 тела	2.7	~3	~6.6	~8	~4.8	~5
[Des01]	МГК	~3	1-4				
[Tim02]	ГГ 5 тел	~2 ~		1.1			
Работа 2	ГГ 3 тела	1.5-5	1-6		-		

[Bev81] - J.J. Bevelacqua, Nucl. Phys. A357 (1981) 126.

[Pop85] - N.A.F.M. Poppelier et al., Phys. Lett. B157 (1985) 120.

[Gor89] - A.M. Gorbatov, et al., Sov. J. Nucl. Phys. 50 (1989) 218.

[Fil99] - G.F. Filippov, A.D. Bazavov, and K. Kato, Phys. Atomic Nuclei 62 (1999) 1642.

[Des01] - P. Descouvemont and A. Kharbach, Phys. Rev. C 63 (2001) 027001.

[Tim02] - N.K. Timofeyuk, Phys. Rev. C 65 (2002) 064306.

В таблице 2 даётся сводка результатов по ⁵Н полученных в различных теоретических подходах. Ситуация в целом далека от согласия. Результатом наших теоретических исследований явилось понимание определённых принципиальных проблем связанных с ⁵Н.

1) Существует неопределённость в выборе потенциала в подсистеме кор-нуклон (t+n). Это происходит вследствие низкого качества данных по t+n рассеянию и неоднозначности их анализа. Результатом является неопределённость энергии основного состояния ⁵Н порядка 1 МэВ.

2) Состояния в ⁵Н могут иметь весьма необычную природу. В соответствии с теоретическими расчётами, они образовываются, в основном, не вследствие

отражения от некоего барьера, а скорее вследствие связи каналов и медленного движения над очень широким (в данном случае коллективным) барьером.

3) Даже основное состояние ⁵Н получается достаточно широким, а время жизни малым, вследствие чего возникает возможность сильной чувствительности наблюдаемых свойств состояний к механизму реакции. При этом наблюдаемое положение основного состояния может «плавать» на 1 МэВ и более.

4) Одно из определений состояния в ядерной физике состоит в том, что свойства состояния не должны зависеть от условий наблюдения (например, того, как состояние заселялось). Для достаточно узких состояний независимость строго доказывается в весьма общих предположениях. Случай ⁵Н является вероятно пограничным (а может и находится за гранью этой "достаточной узости"). Состояния ⁵Н в этом смысле более строго называть "структурами в континуума" – т.е. свойствами, связанными со взаимодействием в конечном состоянии.

5) Не смотря на указанные проблемы, теоретические расчеты имеют и сильные стороны. К надёжно рассчитываемым относятся связь положения резонанса и его ширины, а также связь структуры и корреляций при распаде. В этой связи было указано, что корреляционные измерения могут вносить ясность в тех случаях, когда спектр инвариантной (отсутствующей) массы даёт информацию, допускающую неоднозначную интерпретацию.

Третья глава посвящена результатам эксперимента по изучению ⁵Н в реакции передачи двух нейтронов ³H(t,p)⁵H. Эксперимент проводился на циклотроне U-400M Лаборатории Ядерных Реакций им. Г.Н. Флёрова. Тритиевый пучок с энергией 57.7 МэВ транспортировался по модифицированной линии масссепаратора ACCULINNA в вакуумную камеру, где размещались тритиевая мишень и детекторы заряженных частиц. Линия масс-сепаратора также использовалась чтобы уменьшить угловое расхождение и энергетическую дисперсию исходного тритиевого пучка до 7 мрад и 0.3 МэВ полной ширины на полувысоте (FWHM). Тритиевый пучок со средней интенсивностью $3 \cdot 10^7$ в секунду, фокусировался в 5 мм пятно на газовой ячейке криогенной тритиевой мишени. Газовая ячейка,

6

толщиной 4 мм, заполнялась тритием под давлением 860 мбар и охлаждалась до 25° К.

Экспериментальная установка показана на Рис. 1. Медленные протоны, выходящие из мишени в направлении назад измерялись кольцевым 300 µм кремниевым детектором с активной зоной имеющей внешний и внутренний диаметры 82 мм и 32 мм, и 28 мм центральное отверстие. Детектор был установлен в 100 мм не доходя до мишени. Позиционная чувствительность обеспечивается сегментацией на 32 кольца с одной и 32 сектора с другой стороны. Порог детектирования для протонов был 1 МэВ. Телескоп для заряженных частиц, движущихся в направлении вперёд был установлен в 150 и 220 мм после мишени в двух различных сериях измерений. Телескоп состоял из четырёх кольцевых кремниевых детекторов такого же размера, как протонный детектор. Толщины детекторов, начиная от входа составляют 300 µм и 3 по 1 мм. Две стороны первого, 300 µм детектора, сегментированы на 16 колец и 16 секторов.

Рис. 1. Схема экспериментальной установки.

Идентификация частиц в переднем телескопе осуществлялась стандартным ΔЕ-Е методом. Нейтроны детектировались 48-ю сцинцилляционными модулями времяпролётного спектрометра DEMON. Модули DEMONa были установлены на расстоянии 2.5 м от мишени в угловом диапазоне θ_{lab}= 5°-40°. В работе рассматриваются в основном тройные p-t-n совпадения. Детектирование таких событий однозначно идентифицирует p+⁵H выходной канал и делает возможной полную кинематическую реконструкцию. Представление данных в системе центра масс (ц.м.) t+2n является наиболее подходящим для поиска резонансов в ⁵H. Ось Z выбирается вдоль направления (2/3)k_{beam} + k_p, которое является направлением передачи импульса в антилабораторной системе. Некоторые представления экспериментальных данных в этой системе приведены на Рис. 2 (E_{SH} – ц.м. энергия ⁵H, E_{nn} – энергия относительного движения для нейтронов, θ_t и θ_n – полярные углы трития и одного из нейтронов).

В угловом распределении тритонов три острых пика наблюдаются в широком диапазоне энергий E_{5H} . Эти пики связаны с заселением возбуждённых состояний в ⁵H, чья структура - в основном тритон в d-волне. Можно заметить, что при малых E_{5H} «сателлитные» пики (направления вперёд и назад) исчезают и остаётся только пик при $\theta_t \sim 90^\circ$. Это изменение не связано с эффективностью, а является результатом интерференции возбуждённых состояний в ⁵H с основным состояние $1/2^+$.

Основной чертой нейтронных распределений, показанных на Рис. 2, является концентрация вероятности при низкой энергии E_{nn} . Это, очевидно, связано с сильным n-n взаимодействием в конечном состоянии (ВКС). В этой

части спектра угловое распределение также имеет три пика, напрямую связанных с тремя пиками в тритонном спектре. Действительно, в пределе $E_{nn} \rightarrow 0$ индивидуальное движение нейтронов редуцируется до движения одного «динейтрона», который имеет такое же угловое распределение в ц.м. системе ⁵H, что и тритон. При больших E_{nn} энергиях, нейтронное распределение имеет два пика. Это является проявлением р-волнового движения индивидуальных нейтронов, что является ожидаемым свойством ⁵H.

Сильно осциллирующие угловые распределения тритонов (три пика) и нейтронов (два пика) могут иметь два объяснения. Они могут (і) возникнуть за счёт специфического механизма реакции, или (ii) они могут являться проявлением состояний в ⁵Н. Расчёты, выполненные для реакции ³H(t,p)⁵Н в модели Борновского приближения с искажёнными волнами (DWBA), показывают, что первое объяснение весьма не правдоподобно. В случае (ii) для получения таких сильных осцилляций, как на Рис. 2, требуется выполнение целого ряда условий. 1) Резонансные состояния заселяются в реакциях передачи при условии «нулевой геометрии». Ядро в интересующем резонансном состоянии испускается (примерно) при нулевом ц.м. угле. Также, необходимо, чтобы только частицы с нулевым спином участвовали в заселении и распаде этого состояния. Например при изучении α-α корреляции для частиц, испущенных в двухступенчатом процессе. «Первая» испущенная α-частица детектируется под углом максимально близким к нулю, при этом угловое распределение «второй» α-частицы имеет простой сильно осциллирующий вид, хорошо описываемый полиномом $|P_1(\theta)|^2$. 2) Осциллирующие угловые распределения могут наблюдаться в случае прямых реакций. Как и в предыдущем случае, необходимо, чтобы только частицы с

нулевым спином участвовали в заселении и распаде состояния. Но теперь корреляции наблюдаются относительно направления переданного импульса.

3) Осциллирующие угловые распределения липь один раз наблюдались в реакциях с ядрами, имеющими ненулевой спин: ¹³C(⁶Li,d)¹⁷O[•](α)¹³C_{g.s.} Позднее было показано, что этот результат может быть объяснён только в случае энергетического вырождения и интерференции (по крайней мере) двух состояний с разными спинами (в нашем случае должны интерферировать состояния возбуждённого дублета $J^{\pi} = 3/2^+$, $5/2^+$).

4) Основное состояние ⁵Н плохо (по сравнению с возбуждёнными) заселяется в реакции двухнейтронной передачи вследствие статистического фактора (2*J*+1), а также как результат "нестыковки углового момента".

5) Передачей спина в реакции можно пренебречь. Передача спина $\Delta S = 1$ означает, что два нейтрона передаются в состоянии относительного движения с отрицательной чётностью. Существующий опыт изучения реакций передачи показывает, что «передача динейтрона» ($\Delta S=0$) является гораздо более предпочтительным каналом реакции.

6) Нужно, чтобы компонента ВФ { $L=2,S_x=0,l_x=0,l_y=2$ } доминировала в распаде ⁵Н (L - полный угловой момент, индексы х и у относятся к спинам и угловым моментам подсистем nn и t-nn). Такая компонента ВФ соответствует d-волновому движению трития в ⁵Н. На то, что это требование удовлетворяется, указывают теоретические расчёты ⁵Н, ⁶Не и экспериментальные результаты по распадам родственного состояния 2⁺ в ⁶Не.

В четвертой главе приводится формализм использованный для анализа экспериментальных данных, рассматриваются качественные аспекты корреляций, даны процедура и основные результаты анализа.

В нашем анализе данных мы предположили, что амплитуды распада факторизуются на члены описывающие внутреннее движение ⁵Н (описываются разложениями по гиперсферическим амплитудам) и члены отвечающие за движение ⁵Н как целого (описываются р-матрицей). Детали экспериментальной установки (геометрия, эффективности детектирования, пороги, параметры пучка и мишени, энергетическое и временное разрешения и т.д.) учитывались в МК симуляции. Из-за очень сложных поправок на эффективность прямое применение χ -квадрат процедуры к анализу этого эксперимента едва ли возможно. Поэтому процедура подгонки была реализована итеративно с тремя шагами в каждой итерации:

1) "Внутренние" распределения по E_{nn} подгоняются по χ -квадрат по отдельности в нескольких бинах по E_{5H} . Извлекаются коэффициенты разложения амплитуд по гипергармоникам.

10

- 2) Подгоняются угловые распределения частиц в системе E_{5H} (опять же, в бинах по
- *E*_{5H}). Извлекаются параметры ρ-матрицы.
- 3) Собирается информация по бинам и подгоняется профиль ⁵Н спектра по E_{5H} .

Рис. 3. Угловые и энергетические распределения для ⁵Н для разных энергетических бинах. Ромбы – экспериментальные данные, а серые гистограммы – результаты МК расчётов. θ_k – угол между Якобиевскими векторами импульсов в Якобиевской «Т»-системе. Вместе с E_{nn} / E_{5H} переменная θ_k образует достаточный набор переменных для описания внутреннего движения трёх-частичной системы при фиксированной / E_{5H} .

Рис. 4. Угловые и энергетические распределения для ⁵Н для разных энергетических бинах. Ромбы – экспериментальные данные, а серые гистограммы – результаты МК расчётов.

На Рис. 3 и 7 демонстрируется качество подгонки экспериментальных данных для различных распределений. На Рис. 4, 5, 6 и 7 показаны восстановленные (поправленные на эффективность) распределения.

Рис. 5. Восстановленные (поправленные на эффективность) спектры по *E*_{nn} для различных энергий *E*_{5H}. Сплошная серая кривая отвечает случаю «чистого» n-n BKC.

Рис. 6. Восстановленные (поправленные на эффективность) угловые распределения по θ_i [панель (а)] и θ_n [панель (b)]. Сплошная, штриховая, пунктирная и штрих-пунктирная кривые соответствуют панелям (а), (b), (c) и (d) на Рис. 4.

Полный спектр отсутствующей массы ⁵Н (Рис. 7) сам по себе гладкий и не содержит никакого намёка на основное состояние. Однако, угловые корреляции (Рис. 4, 6) не могут быть воспроизведены без предположения о наличии основного $1/2^+$ состояния в области 1.8 МэВ.

Рис. 7. Верхняя панель: восстановленный спектр отсутствующей массы ⁵Н. Сплошная кривая результат фитирования (входные данные для МК симуляции). Шприховая и пунктирная кривые показывают соответственно вклад состояния 1/2⁺ и дублета 3/2⁺, 5/2⁺. Нижняя панель: экспериментальный спектр отсутствующей массы.

В пятой главе обсуждаются полученные нами результаты а так же проводется сравнение с предыдущими экспериментами. Здесь же содержится заключение, где сформулированы основные

результаты диссертационной работы:

- Впервые в трёхчастичной t+п+п модели был теоретически изучен непрерывный спектр ядра ⁵Н. Использовался метод гиперсферических гармоник, правильно работающий с существенно трёхчастичной асимптотикой в непрерывном спектре ⁵Н. Были предсказаны свойства основного 1/2⁺ состояния и дублета 5/2⁺-3/2⁺ нижних возбуждённых состояний;
- Было показано, что, вследствие значительной ширины состояний в спектре ⁵Н, наблюдаемые свойства системы могут сильно зависеть от механизма реакции;
- Анализ имевшихся экспериментальных данных показал, что они не достаточны для надёжного заключения о положении основного состояния ⁵Н и необходимы детальные корреляционные измерения;

- Был развит формализм (на основе метода гиперсферических гармоник и *р*матрицы) для анализа корреляционных экспериментальных данных из распадов выстроенных трёхчастичных систем со спином;
- На основе этого формализма были проанализированы данные из реакции 3 H(t,p)⁵H при $E_{lab} = 57.7$ МэВ. Было показано, что в этой реакции заселяется в основном низколежащий дублет $5/2^{+}$ - $3/2^{+}$. На основе анализа интерференционной картины было установлено, что основное $1/2^{+}$ состояние ⁵H находится в области ~1.8 МэВ.

Результаты диссертации опубликованы в следующих работах:

- N.B. Shul'gina, B.V. Danilin, L.V. Grigorenko, M.V. Zhukov, and J.M. Bang, Nuclear structure of ⁵H in a three-body ³H+n+n model, Phys. Rev. C 62 (2000) 014312 (4 pages).
- L.V. Grigorenko, N.K. Timofeyuk, and M.V. Zhukov, Broad states beyond the neutron dripline. Examples of ⁵H and ⁴n, Eur. Phys. J. A19 (2004) 187-201.
- L.V. Grigorenko, *Experimental puzzle of ⁵H*, Eur. Phys. J. A20 (2004) 419-427.

4.

5.

- M.S. Golovkov, L.V. Grigorenko, A.S. Fomichev, S.A. Krupko, Yu.Ts. Oganessian, A.M. Rodin, S.I. Sidorchuk, R.S. Slepnev, S.V. Stepantsov, G.M. Ter-Akopian, R. Wolski, M.G. Itkis, A.A. Bogatchev, N.A. Kondratiev, E.M. Kozulin, A.A. Korsheninnikov, E.Yu. Nikolskii, P. Roussel-Chomaz, W. Mittig, R. Palit, V. Bouchat, V. Kinnard, T. Materna, F. Hanappe, O. Dorvaux, L. Stuttge, A.A. Yukhimchuk, V.V. Perevozchikov, Yu.I. Vinogradov, S.K. Grishechkin, S.V. Zlatoustovskiy, V. Lapoux, R. Raabe, L. Nalpas, *Observation of excited states in ⁵H*, Phys. Rev. Lett. 93 (2004) 262501 (4 pages).
 - M.S. Golovkov, L.V. Grigorenko, A.S. Fomichev, S.A. Krupko, Yu.Ts. Oganessian, A.M. Rodin, S.I. Sidorchuk, R.S. Slepnev, S.V. Stepantsov, G.M. Ter-Akopian, R. Wolski, M.G. Itkis, A.A. Bogatchev, N.A.

14

Kondratiev, E.M. Kozulin, A.A. Korsheninnikov, E.Yu. Nikolskii, P. Roussel-Chomaz, W. Mittig, R. Palit, V. Bouchat, V. Kinnard, T. Materna, F. Hanappe, O. Dorvaux, L. Stuttge, A.A. Yukhimchuk, V.V. Perevozchikov, Yu.I. Vinogradov, S.K. Grishechkin, S.V. Zlatoustovskiy, V. Lapoux, R. Raabe, L. Nalpas, *Correlation studies of the ⁵H spectrum*, Phys. Rev. C **72** (2005) 064612 (17 pages).

Получено 13 января 2006 г.