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1, Introduction & o

Performing some calculations by means of Hori's method/ 1 the author

12/

Feynman-amplitude one has to operate with a large number of functional differen-

found the following difficulty ! 3/ : In order to deduge a physically acceptable
tiations (' with respect to the external sources) on the generating functional &

of the vacuum-expectation-value of the S matrix, However I depends in inte-
resting cases in a wvery complicated way on the external . sources,
Therefore one practically cannot calculate higher ordgrs of Pj'eynman-amplimdes
with Hori's method. Here the author propbses to modify the Hori's method slight-
ly. Do not calculate, the generating functional { in a closed form, but write it
as a Volterra series ( with respect to the external sources). The coefficients of
this series c¢an be written down as functional integrals and calculated { in our
example) exactly with help of distribution analysis, ¥ you write the vacuum-expec-
tation-value of the $ -matrix also as a Volterra series, the coeflicient functionsl of
this series can be represented as infinite series of certain integr;ﬁls over the
coefficient functions of the @ -functional, The main difficulty of the : resent method

is to sum up this infinite series, Here we cannot solve this difficulty.

2, Volterra series for 0

/1

ple examples, Hori could give closed expressions for this functional by means of

In Hori's work the generating functional ! is introduced; in some sim~

functional integration, Hori's definition of {} reads as follows:
+ + + ‘4 *
Moo*sjl=(((expl=i f(E ¥ d=0" U—pd ~jid)dx 1D, ¢ ,¢). (1)

(Here and in all this work we use the example of one real ( ¢ ) and one com-
plex( v . ¢ * ) scalar field, interacting by the term 44 oy ¢ in the Lagran-

gian. The terms n+|ll. [4 w+,i ¢ represent the interaction of the fields with the

external sources p , »¥, j . The free Lagrangian would read

L =y’ (] -mdg+ad -u?) o - The symbol D(¢*, ¢ ,é) in (1) stands for

the integration element in the space of the functions ¥ , ¢* s+ ® ). As already

stated, we propose to reprzsent { as a Volterra series ( see, eg.
4/ ): . oo . bemin

o n ] +: =2 (‘,_‘—-“'—- cos ‘ . 4, .
los0™) i) l._.a.. TR [ [d, —d% dy, ... d}tul wed %z
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. QS,.,Z (Xg oo X3 %o Fs 2y eee zm)en'l' m (X2,

- (2) "o

with e,p . (XgeZm) =0(3) oo 0(X) o' (7, ) e 0™ (7g)iC2 ) o i(2,,).

The functions ") (x,...2,) of course determine the functional @ , They

nlm
are symmetric with respect to the vanables PRSI U T SRIUE 4 2R PR Z., .
(Here and in the followmg we assume, that our Volterra series con\)erges uniform-
ly at the "point" = p =j=0 ; One is not sure if this is true, By comparing

egs (1) and (2) one gets the expressions:

contlem R
(1) : 'd’n,f,m (x,...2,)
(n+E+m)
= ]im : L i - (3)
"+*g S0(Xy) e B0(Xn )80 (Fy }uebp (vy)8Hz )8Mz )
[‘Aling -
10 ’ )

i

_..+E+.. ; + + . . + ' K +
=(1) (T () eeedr (x J(Fg) oo U(7,) b(2) e b(2 o) exp(-ik [ Y& d D0 )

The functional integrals (3) can-be calculated directly. The representation {(2)
for enab’l/es one to perform any number of functional differentiaions on
very easily. It is also very useful, because at the end of calculation of Feynman
~amplitudes (which always is our aim, of course) the limiting process p- 0,
p 0 , 1+0 has to be always performed, Let us first calculate ¢000 , defined
by

T b 00 = Mexp(-ig [y ved x)pyt,u, 0. . (¢)

Using the definition of the § -. functional

(5)

8Lf(x)]= fexp(~2miff(x)®(x)d ‘x)D(®),

we can at orice perform the functional integration with respect to ¢ ., This

gives:

. +
P BRI
000 2
[
If you write s =re “ and introduce the lattice space x instead of the con-

tinuous x -space, you have

oo = ImeE(o['OfS(.—._r ), dr,'(,dxk ).

( The symbol lim 11 x Mmeans: Take the product over all points X, of the

lattice- space, then go to the limit of the x - continuum ), That is, ' we have’

Bo00™ ItmI.I(wk )i

2 o0 ‘ . _'.
X =2 r8(—r )e, dr, = 2 (s(yrdy. o
[
Now we write
o 1' for y>o0
dy ={0(y)8 dy when @g(y) = .| .
[6¢y) y_i (y)8(r%) or y <o

[

The product of the improper functions &(y) and 4d(y) in the integrand must be
treated by means of distribution analysis, In the work/ / of Guttmger: we find

the rule CL )
0(7)8(y) =~ c,8(7)s o (6)
where ¢, is a finite, but quite arbitrary constant, ’I‘hergfpre Vzle’\ gef
©, -.-_2_"_,_co , and " ) ’ ’
¢ ; , 20?0 ‘
¢Mo = lim I}(--g—co). : (7)

From (7) one would like to conclude, that ¢, - is a highly smguéa_r quantity,
But using the rules for products of the type lim I}f(;k) stated in’."', we arrive

’

at the expression: 2

2
¢'ooo - exp(c In(~

co’)); ) - (8)

where ¢, is another finite, arbitrary constant, which stems from Gustirlger's rule
( see/ 5/ ) _ »
2
S (y) = c, b(y)% (9)

Remark please the singularity of %000 for § +0 and arbitrary C, 4 €y ( see

also/ 3 )! Next let us discuss the function .

*(x )iy yexp(~ig (6w ®d*nDw v, ). (10)
S (X7, ) = M9 *0x )00,

110
(Remark that all functions of type énoo(n-/O) and ¢ old (E40) and ¢ Lo (t+4o0)
(with nd £ b0 ) are zero because they contain at least one integral of the type

n n
fe'“ da ). The function %110 is zero for all x ¢ v, becau's;e
those cases also appears the integral fe da , if you introduce y =re .

. 9 la,,
For x =y, ,however, you get with ¢ (X, )=r,e !

. R g 2 00 IMte é 2
s oo dr, d . 25(=2-¢")r dr d
CINE T AL Ixml"lr.(of'f’S(———h r ), dry da ) Zl;f, (2” g )1, dry da,

( The symbol

r means: Take the product over all points x, of lattice space
k




, L]
. ) 2 ! 1 2) d
with the exception of the point x, ). That means, we can write: R booz (2,02, ) = lim r{(_Tco)(—z—‘—Is (7 ?)
o0 - N
2., & 2 \ :
. 2 ‘ .
é (x,,x )= ¢ {' 8(2,,')‘1(' ' v . With/5/we have
1’7 . . (2) . (D ), ..
" " M \ ‘ 8 (7)0(y) = —cy8 (y)—c, 8 (y)=c,8(y)

;
Now we have " +o2
re’ 80 e hdee’y = ALY [yo0y) 80rray .
[4 —t0

' 4

: % (2) .
( c, 1 €0 Cy finite, arbitrary constants), so that of8 (y)dy = - ¢, . At the

o ( ) ‘ D : end we find: e
nce more we use formula (6) and get for our integral cy-dy=0. : == . L.
‘ & =4 [o(y)-y-dy =0 ¢go) (z,,2,) ¢ooo ’;;!‘c (14b)
So we arrive at the result: ) °
¢uo (x, "7, )=0. (11) “' As the last example for the calculation of coefficients from the Volterra series(2)
By quite a similar calculation we can show, that . ' we take | (15)

. + .4
8,2 (Xei v, 02,0z, )= (10" (x )0y )00z, ) om(-ig (¢ 6 ®d x)x
xDeyt,¥,®).

(X ...y )=0 for nd4o. (12) o . .
e 0 ' . . ) ; The functional integration over ® ' can be performed in the same manner as in
Next we are interested in the function ) the function D902 * Because of integration over the phases of the functions vt
. + . 8
booz (2,,2,)= m'o(z,)0(:,)exp(-xgf-j;*.,l,Od‘x)D(.,I,,up ,0). (13) A and ¢ we get the result ¢, ,= 0 for x fy, .
Let us first suppose z £z ;. - Then we get { Calculations similar to those performed earlier show us, that b,, I8 different
. ” m? —ig =D H . N 3 from zero only, if x =y =2 or x =y = 2, or even X, =y =2 ,%= 3 .
b 002 -l:ml} (_-...é'_c:) (_Z’f.f,s (rydy) , x) »4 y 17V = % 1~ 7 2
o More exactly we get:
where c i
y: . & - —1 for | x =y =z or
5“)(}’) - ——d—a(y) y Le. : 000 2ngc, LR R ‘
dy X =y =2 or (16)
r “ 1 71 2
Y ) (x ;5 ;2 ,32)= X =y =z =z
f‘btelp(-h'i,yohdel-.;_..%8(‘?). ; e ThERTE,
4 .
0 else .

Now we have 13 o0 ) .

[8 (7)dy = [0(3)6 (y)dy=

o Higher ¢ functions can be calculated in a very similar manner; all of them can

be calculated exactly.

+ 00 1) 4+ 00 1 .
o Co‘_L P _‘CI.L ey = - o (see/ 5/ )' ; 3. Oonneéfion between the ¢ -functions
and Feynman- amplitudes
This leads to .
K turns out to be useful to develop also the vacuum-expectation-value of the
. a2 N N . -
¢ 14a 3 - P jes:
G o0z (2,02, =y (= ——A5—) for z, oz, . {140) § ~matrix in a Volterra serle: Cntlt )
o “o S [(pro +il= 2 m f....fd‘x veed 2z
f a0 T e 2l U m! 1
For z = z, however we get 4 =0 Co(x?)
x) .’ : i Tnll’_(x‘... L L . (Xp--0 2, )
n. means: Let out the points x. -z and ¥, =2, from the product! The quantities e, , are the same as in; eq. (2) The functions: T..,!,..




of course determine the functional S'.o.[p,p+, jl +« They are (up to a constant)

already the Feynman-amplitudes x , because by definition e.g.:

2 g
.- 5's
X(xl,y‘)- lim Sv-c . _-F———L_ =~
o0 5o (x,)8p(y,)
o*0
>e - Tiro (x,,5; ) . (18)
To00
(Here one can see once more, that the development (17) is quite useful),
To establish the relation between the coefficients T ¢ o and ¢ k
we start from the equation mbm b
Svnc = Clp(—iw)n ’ ( 19) {
with
o= (26 (ny) 2+ 2 6 (xy) 8 ja‘rd'y
Sp(x) ™ 8o*(y) Sij(x) * 3i(y)
and

G, (xny) =8(x-y)[ -a%)
y

/1/).

( see

Consider now the functional

Fn.l,m [p,p+'i]= f~---fd‘x‘ “'d‘zmén,z.m (xl'“zm)an,l,m (x['" z,.)' '
It can be proved easily, that ‘
S_F_ﬂ.‘l,m 4 4 ’
. Py nf.fd'z, ..d 2,,125“_2’"(!‘ Xy Z )0 p o, (Xpeaa Z )
and 1
Ky

ff 8 G(‘;Y}—-—-——-—d‘xd‘yﬁ ¢ =

Sp(x) 5p+(y) n,t,m

4 4 4 4
. d xnd yz...d y.d" z

=ndf... “
melf...[d* AP

4 ¢ ¢
. . d zmd xd y .

':G("”'d’n,g,m("“z“' i ¥a¥, -0 FpiZ, ----2..\);:(}!,)---p(x,,)o,+ (72)...p+‘(yl)l(zl)j(zm).

Using this formula one can write up easily for each 'T a series of the ;

nl,m

following type:

(20)

-4 ‘ ‘
Tooo = $o00 * [[Gu(x 7, )¢ 00 (3,y,)d x,d "y, 4

Ly ‘ ‘
+1HGu (zl,zzjéo“(z,,zzjd zld z, -

~ (16 (x5 )G (202, )45 (X577, 72,52, ydx, d*y, d%z,d%z  + (20)
Fooi e
4 4
= : i ¢ ; d
T 1o ém(xz,y,)wffcm(xz.yz)cS“o(X,:xz Va7, )d x d7y o+
. ¢ 4
+'fqu(2,r22)¢“,(l,;}’,;2,;z2)d zld zZ, - (21)

‘ ] ‘“«
~ I G (X, 0y, )G (X ¥g )b (Xy 1 Xy1 Xy i¥ys¥ys¥g)d X, d x,dy,d y, -
. d' d*y d%z d°
"’””Gm("z’yzjcu(zl’~zz)d’2n (X, 1%,%, %5 2,,2,)d x,d 'y, d"z z, -
‘ 4 ‘ 4
. ['ffqu(z’,z‘)Gu(zl,z )¢114(x1;y1’21“"2‘)d z, d zzd z’d z, +

The rule for the construction of these infinite series is easily visualized.

It has no great value to write up the general series for T,,,g’m ' , but of

course this could be done,

4, Discussion

In order to examine the value of the presently proposed formalism, now we
introduce into (21) the ¢ -functions from chapter 2 of the present paper and

remember, that 7, has (up to a constant, see (18) ) the meaning of the

propagation function for the ¢ - particles,

In the series (21) the zeroth- order-term vanishes ( b0 =0 ). From

the two first- order-terms only one does not vanish ( qS”, ), but it is different

That means, we do not have any propagation, This

from zero only for x;=y, .
of the Lagrangian,

is well understandable: Propagation is done by the term L,
We have in O nowever only the term L ,of L .
Therefore propagation should appear only in higher orders. In th

0 b 11e is only different from zero, if x, = s, ., Howevet

e next order

the term ¢

a0 7
22 is different from zero also for x, ¥y, , namely for x =y,

s X3 = Yy




But performing the integrations over x, and vy, the factor (’)(x2~ y’) appe
ars in Gm(",’y;) .« That means, only the points «x , 77, survive and 7"“0 is:
also in this order different from zero only for x = ¥y o

1
It seems to the author, that one can prove the same property of T also
in higher orders, If this is true, it wou.ld mean that one can get a real prOpac,c
ion function first after summing up the whole infinite series (21), at least partl
The author hopes, that he will be able to come back to these problems

later,
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