90-190

сообщения объединенного института ядерных исследований дубна

5-43

14-90-190

А.В.Белушкин, Е.А.Горемычкин, С.Ф.Гундорина, А.Ю.Музычка, В.М.Назаров, И.Натканец, И.Л.Сашин, А.Фидеркевич

ИЗУЧЕНИЕ ВОЗМОЖНОГО ВЛИЯНИЯ МИКРОПРИМЕСЕЙ НА ДИНАМИКУ ВЫСОКОТЕМПЕРАТУРНЫХ СВЕРХПРОВОДНИКОВ La _{2-x-y}Re _ySr_xCuO_{4-δ}

К настоящему времени опубликован ряд работ, посвященных динамике решетки ВТСП на основе La, в том числе с помощью неупругого рассеяния тепловых нейтронов (НРТН) $^{/1-5/}$.

Ранее мы сообщали /6/ результаты измерений обобщенной функции плотности фононных состояний ВТСП керамик состава La_{2-*} Sr_{*}CuO₄₋₈, в которых нами была обнаружена особенность в спектре НРТН в районе 6 мэВ. Температурная и угловая зависимость интегральной интенсивности этой неупругой линии указывали на магнитный характер соответствующего ей возбуждения. В ряде работ также указывалось на существование избыточной интенсивности в низкочастотной области спектра HPTH в районе 5-8 мэ $B^{/5/}$, но выраженной не так ярко, как в наших спектрах. Как мы уже сообщали /6/, исследуемые образцы La2-x Sr, CuO4-8 имели низкую Те, что мы связывали с дефицитом кислорода δ. Приготавливались они из La 03, Sr CO3 и Cu O по стандартной методике, описанной в 161, с закалкой на конечной стадии синтеза между двумя массивными медными пластинами. Образцы с x = 0,1 и x = 0,2 имели T_c, равную 16 и 24,5 К соответственно, а с x = 0,0 и x = 0,3 показывали полупроводниковый ход электросопротивления вплоть до гелиевой температуры.

Поэтому были проведены измерения спектров НРТН новой керамики La_{1,85} Sr_{0,15} CuO_{4- δ} с высокой температурой сверхпроводящего перехода. Образец был приготовлен из La₂(CO₃)₃. θ H₂O, CuO и Sr CO₃ с отжигом в атмосфере кислорода и медленным охлаждением в печи. По измерениям магнитной восприимчивости образец имел T_c =36 K.

Эксперименты по рассеянию нейтронов проводились на времяпролетном спектрометре обратной геометрии КДСОГ-М, установленном на реакторе ИБР-2^{/7}.

Спектры HPTH La $_{1,85}$ Sr $_{0,15}$ CuO $_{4-\delta}$ и La $_{1,8}$ Sr $_{0,2}$ CuO $_{4-\delta}$ представлены на рис. 1. Видно, что спектры HPTH обеих керамик хорошо согласуются, за исключением области передач энергий $\epsilon \approx 6$ мэВ, где интенсивность рассеяния второго образца существенно больше, чем у первого.

۹

٠ť

На наш взгляд, причинами возникновения неупругого пика при $\epsilon \approx 6$ мэВ могут быть следующие обстоятельства:

антиферромагнитные корреляции, связанные с δ;

2) переходы между уровнями кристаллического электрического поля (КЭП) примесей магнитоактивных редкоземельных элементов (РЗЭ) в матрице La_{2-x}Sr_xCuO_{4-δ}.

© Объединенный институт ядерных исследований Дубна, 1990

Рис. 1. Спектры НРТН на La $_{1,85}$ Sr $_{0,15}$ CuO $_{4-\delta}$ La $_{1,8}$ Sr $_{0,2}$ CuO $_{4-\delta}$ T=10 K. ϵ — переданная энергия в мзВ.

В сущности, проверка второго предположения и составляет цель настоящей работы.

В качестве методик для определения элементного состава микропримесей использовались инструментальный нейтронно-активационный и гамма-активационный анализы.

НЕЙТРОННО-АКТИВАЦИОННЫЙ АНАЛИЗ

Навески образцов массой 0,2 г облучались в течение 1 мин в канале облучения реактора ИБР-2 ЛНФ ОИЯИ. Плотность потока тепловых, резонансных и быстрых нейтронов составляла $1,1 \cdot 10^{12}$, $0,23 \cdot 10^{12}$ и $1,4 \cdot 10^{12}$ н/см²с соответственно ^{/8/}.

Измерения у спектров наведенной активности проводились на Ge(L1) детекторе с разрешением 3,0 кэВ по линии 1333 кэВ ⁶⁰Со и выдержкой после облучения 10-30 дней. В связи с тем, что стандартный образец не использовался, приводятся оценки концентрации элементов по отношению к La по следующей формуле ^{/9/}:

$$\frac{m_{Re}}{m_{La}} = 100 \% \times$$

$$\times \frac{\mathbf{S}_{\mathbf{Re}} \cdot \mathbf{M}_{\mathbf{Re}} \cdot \lambda_{\mathbf{Re}} \cdot \mathbf{e}^{\lambda_{\mathbf{Re}} \cdot \mathbf{t}_{\mathbf{B}}}_{\epsilon(\gamma)_{\mathbf{La}}} \cdot \mathbf{I}_{\gamma} \cdot \sigma_{\mathbf{a} \mathbf{La}} \cdot (1 - \overline{\mathbf{e}}^{\lambda_{\mathbf{La}} \cdot \mathbf{t}_{\mathbf{0}}})(1 - \overline{\mathbf{e}}^{\lambda_{\mathbf{La}} \cdot \mathbf{t}_{\mathbf{H}}})}{\mathbf{S}_{\mathbf{La}} \cdot \mathbf{M}_{\mathbf{La}} \cdot \lambda_{\mathbf{La}} \cdot \epsilon(\gamma)_{\mathbf{Re}} \cdot \mathbf{e}^{\lambda_{\mathbf{La}} \cdot \mathbf{t}_{\mathbf{B}}} \cdot \mathbf{I}_{\gamma} \cdot \sigma_{\mathbf{a} \mathbf{Re}} \cdot (1 - \overline{\mathbf{e}}^{\lambda_{\mathbf{Re}} \cdot \mathbf{t}_{\mathbf{0}}})(1 - \overline{\mathbf{e}}^{\lambda_{\mathbf{Re}} \cdot \mathbf{t}_{\mathbf{H}}})},$$

где Re — примесь магнитоактивной РЗЭ; La — лантан; S — площадь под пиком; M — атомная масса; λ — период полураспада; I_γ — интенсивность γ-линии; σ_a — сечение активации, $\sigma_a = \sigma_{\tau} (1+0.22 I_0 / \sigma_{\tau})$; σ_{τ} сечение активации для тепловых нейтронов; t_{B} , t_{o} , t_{w} — времена выдержки, облучения и измерения соответственно; $\epsilon(\gamma)$ — эффективность детектора; I_0 — резонансный интеграл.

В табл. 1 представлены данные по активации обнаруженных нуклидов РЗЭ и оценка их количества.

_	~	
	A	• F
	UTIMUS	4 1

- たいないないない あいまたいい しょう

Нук- лид	Распростр. ат. %	Т _{1/2} , сут.	σ _τ , б	Ι ₀ /σ _τ	Концентр. по отнош. к La, % для La _{2-x} Sr _x CuO ₄	Концентр. по отнош. к La, % для La ₂ (CO ₃) ₃ · 6H ₂ O
¹⁴⁷ Nd	17,2	11,1	1,4	2,03	< 0,4	< 1 · 10 ⁻³
¹⁴¹ Ce	88,5	33	0,58	0,76	$< 9 \cdot 10^{-2}$	< 2 · 10 ⁻²
¹⁶⁰ Tb	100	72,1	25	16,1	<4.10-4	< 3,5 · 10 ⁻³
¹⁵³ Sm	26,7	1,94	210	15,1	<2 · 10 ⁻²	

ГАММА-АКТИВАЦИОННЫЙ АНАЛИЗ

Пробы в виде порошка помещались в полиэтиленовый контейнер шириной 20 мм и высотой 3 мм. Для определения концентрации элементов использовался стандартный эталон гранита СГД-1А, содержащий большой набор аттестованных РЗЭ.

4

A

Образцы облучались совместно с эталоном тормозным излучением микротрона МТ-25 ЛЯР ОИЯИ в течение 4 часов. Максимальная энергия γ -квантов была выбрана 18 МэВ, что исключало реакцию (γ , n) на углероде, который входит в состав контейнеров и La₂(CO₃)₃ · 8H₂O. Экстинкция пучка вдоль пакета образцов измерялась с помощью медных мониторов, помещенных между образцами. Для измерения γ -спектров активированных образцов с выдержкой от 2 до 30 дней использовались Si(Li) -детектор с разрешением 0,6 кэВ для линии 122 кэВ 57 Co, много-канальный анализатор LP 4900 фирмы NOKIA и анализатор ТИТАН.

3

Нуклид	Т _{1/2} , сут.	Е _у , кэВ	Концентрация La _{2-x} Sr _x CuO ₄ ppm	Концентрация La ₂ (CO ₃) ₃ .6H ₂ O ppm
¹³⁹ Ce	137,2	165,8	516 ± 40	123 ±9
¹⁵³ Sm	1,94	103,2	81 ± 6	4, 2 ±0,36
¹⁴⁷ Nd	11,1	91,1	1910 ± 505	5,1 ± 1,74

Таблина 2

Пределы обнаружения и определение количества микропримесей рассчитывались по формулам Кэрри /10/ для полупроводникового детектора.

Данные по активации обнаруженных нуклидов и их концентрации представлены в табл. 2.

Как видно из табл. 1 и 2, в образцах $La_{2-x}Sr_xCuO_{4-\delta}$ основной примесью является Nd. Поэтому для НРТН был использован образец $La_{1,6} \operatorname{Nd}_{0,2} Sr_{0,2} CuO_{4-\delta}$ с содержанием Nd примерно в 30 раз больше, чем в исследуемых образцах семейства $La_{2-x}Sr_xCuO_{4-\delta}$. Образец был структурно-однофазный, $T_c \approx 20 \text{ K}$.

Дважды дифференциальное сечение магнитного рассеяния нейтронов пропорционально числу ионов магнитоактивных РЗЭ, поэтому интегральная интенсивность пика при $\epsilon \approx 6$ мэВ должна была бы возрасти во столько же раз, если природа этого возбуждения определяется переходами между уровнями КЭП иона Nd³⁺.

На рис. 2 приведены спектры НРТН La $_{1,8} \mathrm{Sr}_{0,2} \mathrm{CuO}_{4-\delta}$ и La $_{1,6} \mathrm{Nd}_{0,2} \mathrm{Sr}_{0,2} \mathrm{CuO}_{4-\delta}$, измеренные при гелиевой температуре. Хорошо видно, что пики, соответствующие переходам между уровнями КЭП иона Nd $^{3+}$ лежат в области передач энергий $\epsilon > 20$ МэВ, а интенсивность рассеяния в районе $\epsilon \approx 6$ мэВ для La $_{1,6} \mathrm{Nd}_{0,2} \mathrm{Sr}_{0,2} \mathrm{CuO}_{4-\delta}$ существенно меньше, чем для образца La $_{1.8} \mathrm{Sr}_{0,2} \mathrm{CuO}_{4-\delta}$.

Таким образом, можно заключить, что природа возбуждения при $\epsilon \approx 6$ мэВ не связана с переходами между уровнями КЭП микропримесей магнитных РЗЭ в керамиках La_{2-x}Sr_xCuO_{4-δ}.Это также подтверждает концентрированная зависимость интегральной интенсивности пика $\epsilon \approx 6$ мэВ для этих соединений.

В ближайшее время мы планируем проверить влияние δ на поведение функции плотности состояний в La_{2-S} Sr_vCuO_{4- δ}.

4

Рис. 2. Спектры НРТН на La $_{1,6}$ Nd $_{0,2}$ Sr $_{0,2}$ CuO4- $_{3}$ La $_{1,8}$ Sr $_{0,2}$ CuO4- $_{3}$ при T=10 K. ϵ — переданная энергия в мэВ.

В заключение авторы выражают благодарность В.П.Чинаевой и М.В.Фронтасьевой за помощь в проведении НАА, Ю.М.Останевичу за обсуждение результатов.

ЛИТЕРАТУРА

1

1. Ramires A.P. et al. - Phys. Rev. B., 1987, 36.

2. Balakrishnan G. et al. - Nature, 1987, 287, p.15.

3. Renker B. et al. - Z. fur Phys. B, 1987, 67, p.15.

4. Goshitskii B.N. et al. - Phys. Met. Met., 1987, 64, p.188.

5. Rosseinsky M.J. et al. - Phys. Rev. B., 1988, 37, p.2331.

6. Belushkin A.V. et al. - Physica B., 1989, 156, p.906.

7. Назаров В.М. и др. - В сб.: Краткие сообщения ОИЯИ №6-85, 1935, с.37.

8. Балука Г. и др. - Сообщение ОИЯИ Р13-84-242, Дубна, 1984.

9. Carder W. et al. - Talanta, 1978, v.25, p.21.

10. Currie L.A. et al. - Anal. Chem., 1968, v.40.

Рукопись поступила в издательский отдел 15 марта 1990 года.

5