

in de la compañía de Compañía de la compañía ОБЪЕДИНЕННЫЙ Институт ядерных Исследований

дубна

14-88-446

С.Низиол, А.Бомбик,¹ Д.Фрушарт,² И.Куш,³ Е.Варчевски³

МАГНИТНАЯ СТРУКТУРА Cux Zn 1-x Cr 2 Se 4

Направлено в Оргкомитет Международной конференции по магнетизму, Париж, 25-29 июля 1988 г.

¹ИФЯТ ГМА, Краков, ПНР ²НЦНИ, Гренобль, Франция ³Силезский университет, Катовице, ПНР

1988

BBEJJEHNE

Система шинели $\omega_{x} Zn_{1-x} G_{2} Se_{4}$ проявляет сложные магнитные свойства, которые сильно зависят от концентрации атомов Си Методом дифракции нейтронов при T < T_N = 21 К была обнаружена в Zn Cro Sea гелимагнитная структура. С другой стороны, для характерна ферромагнитная структура. Теоретический Cu Cr2 Se4 анализ, проведенный в работе 757, показал, что магнитное упорядочение в этой системе сильно зависит от концентрации С. С. приводит к появлению ионов Cr4+ , которые осуществляют двойное обменное магнитное взаимодействие с ионами Cr^{3+} . В зависимости от величины × наблюдаются фазовые превращения; несоизмеримая структура типа простой спирали (для 0,0 < X < 0,05) - ферромагнитная спираль - соизмеримая ферромагнитная структура (для $\chi \ge 0.8$). Определены магнитные свойства во всем диалазоне измерения концентрации Си . Для $0, I \leq X \leq 0, 2$ существует резкое увеличение температуры магнитного упорядочения. Она меняется от T_N = 21 К для χ = 0,1 до $_{c}T_{C} \simeq 370$ К в случае X = 0,2. Из формул, приведенных в работе $\frac{5}{}$, видно, что углы $\varphi(x)$ и $\mathcal{P}(x)$, характеризующие коническую спираль, плавно меняются с увеличением Си в этом диалазоне концентрации. Эти количественные расчеты не были проверены из-за нехватки экспериментальных данных. Поэтому экспериментальные исследования этих веществ, а именно структурные и магнитные измерения для определенных составов были целью данной ра-COTH.

Порошковые образцы с X = 0,02 и X = 0,11 были приготовлены в виде керамики. Измерения магнитной восприимчивости проводились в слабых постоянных магнитных полях.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Магнитные свойства

Измерения магнитной восприимчивости X (T) для $U_{0,11}$ Zn₀₈₉ $U_{2,5}e_4$ были проведены в температурном интервале 7 – 300 К на высокочувствительных магнитных весах типа весов Кана. В^{/3/} было обнаружено понижение T_N в магнитном поле для соединения с 0,0 \leq X \leq 0,1 и поэтому решено произвести дополнительные измерения намагниченности в условиях образца, охлаждаемого в постоянных полях до T = 7 К. На рис.1 приведена температурная зависимость обратной восприимчивос-

DESCRIPTION HIL DE LOBRUBS

Рис.I. Температурная занисимость магнитной восприимчивости для Cu_{0,11}Zn_{0,89}Cr₂Se4.

ти $\chi^{-1}(\mathbf{T})$ в диапазоне низких температур с учетом разных величин охлаждаемого поля \mathbf{H}_{C} . Результати $\chi^{-1}(\mathbf{T})$ для $\mathbf{H}_{C} = 0$ описывает кривая І. В этом случае наолюдается широкий минимум, связанный с магнитным

упорядочением. Кривые 2,3,4 описывают $\chi^{-1}(T)$ для образца, охлаждаемого в полях; $H_c = 0,034$ T, $H_c = 0,058$ T и $H_c = 0,13$ T соответственно. В случае кривых 2 и 3 измерения образца. Для образца, охлаждаемого в поле 0,13 T, измерение восприимчивости проводилось в поле 0,022 T. Приведенные выше результать свидетельствуют о сильной зависимости $\chi^{-1}(T)$ от величины магнитного поля, в котором охлаждался образец. А именно, меняется ход кривых при T < T_N и можно более точно определить температуру Нееля, $T_N \sim 2I$ К. С увеличением поля H_c минимум на кривой $\chi^{-1}(T)$ уменьшается до полного исчезновения в поле $\sim 0,13$ T. Выше температуры 40 К ход кривых $\chi^{-1}(T)$ не зависит от поля, в котором охлаждается образец. Кроме того, существует постоянный их наклон с температурой. Для этих образцов явного излома на зависимостях $\chi^{-1}(T)$, который может онть связан с добавочным магнитным фазовым переходом, обнаружено не было.

Магнитная структура

Нейтронографические исследования были проведены при разных температурах: для образца с X = 0,02 при 4,8 K и 80 K, а для образца с X = 0,11 при 4,8 K, 9,3 K, 13,9 K, 23 K и 295 K. На нейтронограммах, полученных при низких температурах, кроме основных брэгговских отражений, обусловленных симметрией $f d_{5m}$, обнаружены сверхструктурные магнитные рефлексы – сателлиты. Их интенсивность с ростом температуры уменьшается до нуля в точке $T \sim 21$ K. На рис.2 в виде примера приведена нейтронограмма для $Cu_{0,1} Zn_{0,89} Cr_2 Se_4$ при T = 4,8 K. Исходя из нейтронографических данных определены параметры кристаллографической структуры. Их значения указывают на существование струк-

Рис.2. Нейтронограмма Си_{о.11} Zn_{0.89} Gr₂ Se₄ при 4,8 К.

найден вектор модуляции Q магнитной структурн. Оказалось, что он нараллелен оси типа $\langle 100 \rangle$. Для $Cu_{0,02} Zn_{0,98} Gr_2 Se_4$ при температуре 4,8 К существует простая спиральная магнитная структура типа Zn $Cr_2 Se_4$ /1/, для которой: $Q_x = 0,42$, $\mathscr{C} = 38^{\circ}, \mathcal{U}_{Cr}^{3+} = 1,75 \mu_B$. Локализованный магнитный момент вычислялся для магнитного формфактора кона Cr^{3+} , определенного Ватсоном и Фриманом /6/.

Результати, полученные для образца с X = 0,II, носят более сложный характер. Наблюдается уширение некоторых пиков (рис.3 и 4), которые можно разделить на две компоненты. Интенсивность диффузного пика зависит от температуры и остается конечной при T = 23 K (рис.4).

Мы полагаем, что причина их возникновения связана с наличием упорядочения типа ферроспиральной структуры в областях, размер которых составляет ~ 180 Å. Рассчитанные параметры приведены в таблице I. Ненулевая интенсивность диффузных пиков выше 2I К снидетельствует о том, что при этой температуре не существует перехода в парамагнитное состояние. При температуре 295 К не наблюдается когерентного магнитного рассеяния нейтронов.

Таблица І.

Тκ	Q×	φ°	20	ሥ _x [ሥ _B]	μ _{yz} [μ _B]	
4,8	0,448	40,3	29	I,75	0,95	
9,3	0,447	40,I	29	1,75	0,95	
13,9	0,443	39,9	22	1,80	0,75	
23				I,85		
					1	
При $T = 0 K$; $\varphi = 35^{\circ}$; $\vartheta = 60^{\circ} / 5/$.						

На основе нейтронографических данных и хода кривых $\chi^{-1}(T)$ (рис.I), которые подобны наблюдаемым в материалах, образующих магнитные кластерные стекла, можно сделать вывод о том, что шшинели $Cu_{X}Zn_{1-X}Cr_{2}Se_{4}$ для 0,05 $\leq X \leq$ 0,2 образуют магнитную структуру в виде кластеров.

В заключение можно сказать, что наши экспериментальные результати не вполне совпадают с количественно рассчитанной в работе ^{/5/} моделью ферроспиральной структуры для этих концентраций Со.

ЛИТЕРАТУРА

- Akimitsu J., Siratori K., Shirane G., Iizumi M. and Watanabe T. J.Phys.Soc.Japan <u>44</u> (1979) 172.
- Yamashita O., Yamaguchi Y., Nakatani I., Watanabe H. and Masumoto K. J.Phys.Soc.Japan <u>46</u> (1979) 1145.
- 3. Krok J., Juszczyk S., Warczewski J., Mydlarz T., Bombik A and Byszewski P., Szamraj W. Phase Transitions <u>3</u> (1983) 105.
- Krok J., Juszczyk S., Warczewski J., Mydlarz T., Szamraj W., Bombik A., Byszewski P. and Spalek J. Phase Transitions 4 (1983) 1.
- 5. Krok J., Spalek J., Juszczyk S. and Warczewski J. Phys. Rev. <u>B 28</u> (1983) 6499.
- 6. Watson E.R., Freeman A.J. Acta Cryst. 14 (1961) 27.

Рукопись поступила в издательский отдел 23 иння 1988 года.

Низиол С. и др. Магнитная структура Cu_xZn_{1-x}Cr₂Se₄

На основании проведенных магнитных и нейтронографических исследований для $Cu_x Zn_{1-x} Cr_2 Se_4$ при x = 0,02 и x=0,11 установлено, что для x = 0,02 существует простая спиральная магнитная структура, и коническая – для x = 0,11 при температуре ниже 21К. В случае $Cu_{0,11} Zn_{0,89} Cr_2 Se_4$ коническая структура образуется в виде кластеров. Полученные результаты не вполне совпадают с результатами расчетов, проведенных Кроком и др. в работе / 5/ для концентрации 0,05 $\leq x \leq 0,2$.

14-88-446

Работа выполнена в Лаборатории нейтронной физики ОИЯИ

Препринт Объединенного института ядерных исследований. Дубна 1988

Перевод Т.А.Филимонычевой

Niziol Z. et al.	14-88-446				
Magnetic Structure of $Cu_{x}Zn_{1-x}Cr_{2}Se_{4}$					
Magnetic and neutron diffraction measurements on					
$Cu_xZn_{1-x}Cr_2Se_4$ yielded a simple spiral structur	te for $x =$				
=0.02 and a conical one for $x = 0.11$ below 21K.					
Cu _{0.11} Zn _{0.89} Cr ₂ Se ₄ proved to be of the magnetic cluster					
glass type in contradiction with theoretical predictions					
of Krok et al. for $0.05 \le x \le 0.2^{1/5}$.					

The investigation has been performed at the Laboratory of Neutron Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1988