

14-86-410

1986

А.Ю.Дидык, В.И.Кузнецов, В.Р.Регель^{*}, В.А.Скуратов, В.Д.Шестаков

РАДИАЦИОННОЕ УПРОЧНЕНИЕ НИКЕЛЯ И ВАНАДИЯ, ОБЛУЧЕННЫХ ТЯЖЕЛЫМИ ИОНАМИ С ЭНЕРГИЯМИ 1 МэВ/а.е.м. Направлено в Оргкомитет

паправлено в оргкомитет IV Всесоюзного совещания "Радиационные дефекты в металлах" /Алма-Ата, июнь 1986 г./

^{*} Институт кристаллографии АН СССР

1. ВВЕДЕНИЕ

При воздействии различных излучений материалы испытывают значительные изменения структуры и важнейших свойств. К таким изменениям прежде всего следует отнести явление радиационного упрочнения, исследованию которого посвящено большое количество работ /см., например,/1-4//. В последнее время наряду с нейтронным облучением это явление изучается и с применением пучков как легких заряженных частиц /протоны и альфа-частицы/, так и более тяжелых ионов с высокими энергиями. Исследование воздействия тяжелых ионов на различные твердые тела имеет важное значение не только для моделирования нейтронного облучения, но и для выяснения явлений, происходящих при взаимодействии заряженных частиц с твердыми телами.

Изменения механических свойств металлов и сплавов изучались при облучении их легкими ионами в диапазоне доз повреждений от 10^{-5} смещ./ат. /при таких дозах начинает проявляться эффект радиационного упрочнения/ до ~2·10⁻² смещ./ат. /см./1-4//. Достижение более высоких доз повреждений затруднено тем, что скорость генерации дефектов в этих экспериментах составляет 10^{-8} - 10^{-7} смещ./ат.с, что приводит к достаточно длительным временам облучения /~5· 10^{4} - 10^{5} с/. Поэтому исследование процессов радиационного упрочнения металлов, облученных до высоких доз повреждений тяжелыми ионами, представляет интерес для детального выяснения особенностей таких процессов.

Более широкие возможности для накопления дефектов в облучаемых образцах представляют ускорители тяжелых ионов с интенсивностями 10¹²-10¹³ частиц/см²с и энергиями ~1 МэВ/нуклон. При таких энергиях пробег ионов в металлах составляет R = = 5-8 мкм, что дает возможность использовать для изучения процессов радиационного упрочнения метод измерения микротвердости, который широко применяется в подобных исследованиях/2,4,5/. Следует отметить, что величина микротвердости коррелирует с другими механическими свойствами материалов, такими, как предел текучести и прочности.

Целью настоящей работы являлось изучение радиационного упрочнения ванадия и никеля, облученных ионами ксенона, аргона и неона с энергиями ~1 МэВ/нуклон.

1 BRUEBODSUDDE XMHHADE

2. МЕТОДИКА ЭКСПЕРИМЕНТОВ. РЕЗУЛЬТАТЫ

Исследования проводились на образцах никеля электронно-лучевой плавки и ванадия /чистота 99,6%/. После механической обработки и электролитической полировки образцы отжигались в течение одного часа в вакууме при температурах 800° и 1100°С соответственно.

Облучение металлов было проведено на ускорителях ИЦ-100 (Ar, Ne) и У-300 (Xe) Лаборатории ядерных реакций ОИЯИ при температурах, близких к комнатным. Микротвердость облученных образцов измерялась при нагрузке 0,5 Н. Максимальная глубина проникновения индентора в материал составляла 3,5 мкм.

Рис.1. Профили повреждений, создаваемых ионами Ne - 1, Ar - 2, Xe - 3 в ванадии.

На рис.1 приведены зависимости сечения образования дефектов в ванадии от глубины проникновения тяжелых ионов, рассчитанные по методу, предложенному в/6/. Видно, что на глубинах ~3,5 мкм величина «р. превышает значение

на входе в мишень в 3 раза. При указанной неоднородности значений σ_D в интервале нагрузок 0,5-1 Н в пределах точности измерений не наблюдалось зависимости микротвердости от величины нагрузки /см. рис.2/.

На рис.3 даны зависимости прироста микротвердости никеля и ванадия ΔH , облученных тяжелыми ионами от дозы повреждений Кt. Как известно/1/, в области доз повреждений от 10^{-4} до 1 смещ./ат. экспериментальные кривые, типа приведенных на рис.3, могут быть описаны степенной зависимостью вида

$$\Delta H = A (Kt)^n, \qquad /1/$$

где A и n - некоторые параметры, зависящие от свойств материалов и условий облучения. Обработка кривых по методу наименьших квадратов позволила получить значения входящих в /1/ параметров /см. таблицу/. Видно, что для различных ионов параметры A и n оказались близкими. Отметим, что при облучении меди и никеля протонами и альфа-частицами/2/ коэффициент оказался равным 0,32.

Рис.2. Зависимость микротвердости никеля / / и ванадия / / от нагрузки. Цифрами указан уровень -3 повреждения в смещ./ат.

3. ОБСУЖДЕНИЕ

Как видно из рис.3, в дозовой зависимости прироста микротвердости не наблюдается насыщения вплоть до доз ~ 1 смещ./ат. Аналогичный результат был получен в работе/2/ при облучении ГЦК-металлов протонами и альфа-частицами при дозах

повреждения до 2.10⁻² смещ./ат. Для детального выяснения этого вопроса требуются дальнейшие исследования. В то же время следует сделать вывод о том, что результаты, полученные на различных заряженных частицах, хорошо коррелируют.

В работе/3/ на основании данных по измерению микротвердости и электронно-микроскопических исследований высказано утверждение о существовании двух стадий изменения ΔH с дозой повреждения Kt, при облучении нейтронами, протонами и альфа-частицами. Результаты, полученные в данной работе, не позволяют сделать такого вывода. В пределах ошибки измерений отношение $\Delta H/ln(Kt)$ остается постоянным во всей области доз повреждений при облучении ионами ксенона, аргона и неона. Результаты измерений микротвердости никеля и ванадия, облученных разными тяжелыми ионами до одинаковых доз повреждения, показывают, что максимальный эффект упрочнения наблюдается для более тяжелых ионов, в данном случае для ионов ксенона. Это подтверждает существующие представления об определяющей роли в радиационном упрочнении металлов дефектов, образованных высокознергетичными атомами отдачи, которые образуются при прохождении тяжелого иона через образец.

На рис.4 приведены зависимости плотности вероятности образования дефектов первично-вибитым атомом с энергией Т для никеля, облучаемого ионами ксенона, аргона и неона при энергиях 1 МзВ/нуклон. Выражение для плотности вероятности может быть записано в виде/7/:

$$P(T) = v(T) \frac{d\sigma}{dT} / \int_{E_d} v(T') \frac{d\sigma}{dT} dT', \qquad /2/$$

где d σ/dT — спектр первично-выбитых атомов, E_d — пороговая энергия образования смещений, T_{max} — максимальная переданная энергия, v(T) — каскадная функция. Как видно из рис.4, по мере увеличения атомного номера иона существенно меняется вклад в образование дефектов атомами отдачи с высокими энергиями. В част-

3

Рис.3. Зависимость прироста микротвердости никеля /а/ и ванадия /б/ облученных ионами Xe(o), Ar(\blacksquare) и Ne(\triangle) от дозы повреждения.

Материал	Параметры	Бомбардирующий ион		
		Ксенон	Аргон	Неон
	A	781+30	880+35	467+20
Никель '	n	0,2 <u>+</u> 0,01	0,3 <u>+</u> 0,015	0,2 <u>+</u> 0,01
	A	605+20	561+20	479 <u>+</u> 15
Ванадий	n	0,29+0,015	0.323+0.02	0.33+0.02

 $\begin{array}{c} P(T) \\ M \ni \overline{g}^{T} \\ 10^{1} \\ 10^{0} \\ 10^{1} \\ 10^{1} \\ 10^{1} \\ 10^{1} \\ 10^{1} \\ 10^{1} \\ 10^{1} \\ 10^{1} \\ 10^{0} \\ 10^{1} \\ 10^{0} \\ 10^{1} \\ 10^{0} \\ 10^{1} \\ T, M \ni B \end{array}$

Рис.4. Зависимость плотности вероятности образования дефектов от ПВА с энергией Т от энергии отдачи в никеле, облучаемом ионами Ne - 1, Ar - 2, Xe - 3.

ности, в случае ионов ксенона атомов отдачи с энергиями более 10 кэВ, по сравнению с облучением ионами неона, образуется примерно на 40% больше. Экспериментально наблюдаемое различие в изменении микротвердости на облученных образцах никеля и ванадия при одинаковых дозах по-

вреждений для различных ионов может быть объяснено различиями в степени жесткости спектров первично-выбитых атомов.

Авторы благодарят академика Г.Н.Флерова и профессора Ю.Ц.Оганесяна за внимание к работе, а также Р.Ц.Оганесяна и А.М.Мордуева за предоставленную возможность работы на ускорителе ИЦ-100.

ЛИТЕРАТУРА

- 1. Ибрагимов Ш.Ш. Вопросы атомной науки и техники. Сер.: Физика радиационных повреждений и радиационное материаловедение, 1981, вып.5/19/, с.25-36.
- 2. Ибрагимов Ш.Ш., Реутов В.Ф., Фархутдинов К.Г. Препринт ИЯФ АН КазССР, Алма-Ата, 1978, с.45.

Таблица

4

Б

- 3. Ибрагимов Ш.Ш., Реутов В.Ф., Фархутдинов К.Г. АЭ, 1983, 54, вып.5, с.339-342.
- 4. Зеленский В.Ф., Неклюдов И.М. Вопросы атомной науки и техники. Сер.: Физика радиационных повреждений и радиационное материаловедение, 1984, 1/29/, 2/30/, с.46-73.
- 5. Panayotou N.F. J.Nucl.Mat., 1982, 108&109, p.456-462.
- 6. Bardos G., Fedyanin V.K., Gavrilenko G.N. JINR, E17-83-303, Dubna, 1983.
- 7. Ганн В.В., Рожков В.В., Юдин О.В. Вопросы атомной науки и техники. Сер.: Физика радиационных повреждений и радиационное материаловедение, 1979, вып.3/11/, с.10-15.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

. ...

если они не были заказаны ранее.

Д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1 р. 75 к.
Д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3 р. 30 к.
Д3,4-82-704	Труды IV Международной школы по нейтронной Физике. Дубна, 1982.	5 p. 00 ĸ.
Д11-83-511	Труды совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике, лубыз 1982/	2 - 50 -
Д7-83-644	Труды Международной школы-семинара по физике гяжелых ионов. Алушта, 1983.	2 р. 50 к. 6 р. 55 к.
Д2,13-83-689	Труды рабочего совещания по проблемам излучения и детектирования гравитационных волн. Дубна, 1983.	2 р. 00 к.
Д13-84-63	Труды X1 Международного симпозиума по ядерной электронике. Братислава, Чехословакия, 1983.	4 р. 50 к.
Д2-84-366	Труды 7 Международного совещания по проблемам квантовой теории поля. Алушта, 1984.	4 р. 30 к.
д1,2-84-599	Труды VII Международного семинара по проблемам Физики высоких энергий. Дубма, 1984.	5 р. 50 к.
· Д17-84-850	Труды Ш Международного симпозиума по избранным проблемам статистической механики. Дубна,1984. /2 тома/	7 p. 75 ĸ.
Д¥0,11-84-818	Труды V Международного совещания по про- блемам математического моделирования, про- граммированию и натематическим методам реше- ния физических задач. Дубна, 1983	3 р. 50 к.
·	Труды IX Всесоюзного совещания по ускорителям заряженных частиц. Дубна, 1984 /2 тома/	13 р.50 к.
Д4-85-,851	Труды Международной школы по структуре ядра, Алушта, 1985.	3 р. 75 к.
Д11-85-791	Труды Международного совещания по аналитическим вычислениям на ЭВМ и их применению в теоретиче- ской физике. Дубна,1985.	4 p.
Д13-85-793	Труды .XП Международного симпозиума по ядерной электронике. Дубна 1985.	4 р. 80 к.
Зака	ЭМ НА УПОМЯНУТЫЕ КНИГИ МОРУТ БИТЬ Направлени	TR ABBACV!

101000 Москва, Главпочтамт, п/я 79

Издательский отдел Объединенного института ядерных исследований

.

Рукопись поступила в издательский отдел 24 июня 1986 года.

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

N	цекс	Тематика
	1	Экспериментальная физика высоких энергий
	2	
	2.	
	.	экспериментальная неитронная физика
	4.	Теоретическая физика низких энергий
	5.	Математика
	6.	Ядерная спектроскопия и радиохимия
	7.	Физика тяжелых ионов
	8.	Криогеника
	9.	Ускорители
	10.	Автоматизация обработки экспериментальных данных
	11.	Вычислительная математика и техника
	12.	Химия
	13.	Техника физического эксперимента
	14.	Исследования твердых тел и жидкостей ядерными методами
	15.	Экспериментальная физика ядерных реакций при низких энергиях
	16.	Дозиметрия и физика защиты
	17.	Теория конденсированного состояния
	18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники
	19.	Биофизика

Дидык А.Ю. 14-86-410 Радиационное упрочнение никеля и ванадия, облученных тяжелыми ионами с энергиями 1 МэВ/а.е.м.

Методом измерения микротвердости исследовано упрочнение никеля и ванадия, облученных ионами Ne, Ar, Xe с энергиями 1 M₉B/a.e.м. Определены зависимости степени радиационного упрочнения от дозы повреждений в области 10⁻⁵-5·10⁻¹смещ./ат. Показано, что радиационное упрочнение зависит от "жесткости" спектров первично-выбитых атомов.

Работа выполнена в Лаборатории ядерных реакций ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1986

Перевод О.С.Виноградовой

۰,

Didyk A.Yu. et al. Radiative Hardening of Nuckel and Vanadium Irradiated by Heavy Ions with 1 MeV/a.m.u. Energy

The hardening of nuckel and vanadium irradiated by Ne, Ar, Xe ions with 1 MeV/a.m.u. energy is investigated using the microhardness technique. The damage dose dependence of radiation hardening is determined in the $10^{-5}-5\cdot10^{-1}$ dpa region. It is shown that radiation hardening depends on the "stiffness" of the primary-knock atom spectrum.

The investigation has been performed at the Laboratory of Nuclear Reactions, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1986