

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

2080/84

14-84-69

1984

А.М.Балагуров, А.И.Бескровный, И.Д.Датт¹, Б.Н.Савенко, Л.А.Шувалов²

ГЕОМЕТРИЯ ДОМЕННОЙ СТРУКТУРЫ И ЗАВИСИМОСТЬ УГЛА СПОНТАННОГО СДВИГА ОТ ТЕМПЕРАТУРЫ В СЕГНЕТОЭЛАСТИКЕ **КD₃(SeO₃)**₂

Московский химико-технологический институт им.Д.И.Менделеева, Москва

Институт кристаллографии АН СССР им.А.В.Шубникова, Москва Ранее установлено $^{1/}$, что кристалл KH₃ (SeO₃)₂ (KTS), относящийся к семейству щелочных тригидроселенитов AH₃(SeO₃)₂, испытывает фазовый перехода прода при температуре -61°C $^{1/}$, а ниже температуры перехода является чистым сегнетоэластиком $^{2/}$. При этом отмечалось, что KTS может служить удобным модельным объектом для исследования некоторых проблем фазовых переходов. В дальнейшем проводились интенсивные кристаллооптические исследования фазового перехода в этом соединении /и его дейтероаналоге DKTS/ /см., например, $^{3/}$, рентгено- и нейтронографическое изучение его кристаллической структуры в пара- /пространственная группа Pbcn/ $^{4/}$ и сегнетоэластической /пр.гр. P2₁/ $^{5/}$ фазах. Наряду с этим в $^{5/}$ была получена информация об упаковке доменов, их относительном объеме в кристалле, высказано предположение о сходстве механизмов фазового перехода, а также геометрии доменной структуры в кристаллах данного соединения и KH₂ PO₄ (KDP) $^{6/}$.

В $^{/7,8'}$ нами было показано, что двухкоординатная нейтронография с использованием дифрактометра по времени пролета является эффективным методом исследования доменной структуры и особенностей ее перестройки при внешних воздействиях/температуры, электрического поля и т.п./ на кристалл. Использование в этом лучае "белого" /максвелловского/ спектра нейтронов позволяет получить информацию сразу о большой области обратного пространства в виде двумерных распределений интенсивности, представляемых в координатах длины волны падающего излучения и угла рассеяния (λ , 2θ).

В настоящей работе приведены результаты подробного измерения распределений интенсивности в нескольких узлах обратной решетки сегнетоэластической фазы кристалла DKTS в широком интервале температур. На основании полученных данных определена симметрия обратной решетки кристалла и рассчитана величина угла спонтанного сдвига u_{xz} в зависимости от температуры. Данное обозначение угла спонтанного сдвига соответствует направлению моноклинной оси в сегнетофазе вдоль оси у, совпадающей с осью дифрактометра. При этом ось у совпадает с кристаллографической осью a, а исследуется (okl) тип дифракционных отражений.

ЭКСПЕРИМЕНТ

Доменная структура сегнетоэластической фазы кристалла DKTS наблюдалась в эксперименте на дифрактометре по времени пролета с позиционно-чувствительным детектором ДН-2 Лаборатории нейтрон-

DOTE RECTATION LACTRON OF THE LUSARD T THE A

1

ной физики ОИЯИ на импульсном реакторе ИБР-2 /9/, Образец в виде прямоугольного параллелепипеда 8х9х10 мм³ с ребрами вдоль кристаллографических осей элементарной ячейки исходной высокотемпературной /ромбической/ фазы помещался в криостат с регулируемой температурой. Средний угол рассеяния 20 нейтронов составлял ~ 90°, интервал углов рассеяния, одновременно охватываемый детектором, - 10°. Используемый диапазон длин волн нейтронов /1 -6 А/ позволял регистрировать одновременно несколько порядков отражения от выбранной кристаллографической плоскости. Переход DKTS в сегнетоэластическую фазу, определявшийся по расшеплению дифракционных пиков, происходил при T_c ~ 10°C; такое значение точки Кюри соответствует ~ 80-процентному дейтерированию образца, Указанный процент дейтеризации установлен исходя из факта существования линейной зависимости между величиной сдвига температуры Т, фазового перехода в кристалле вследствие изотопического замещения (H → D), и процентным содержанием дейтерия в образце /согласно^{/5/}, величины Т_с для 0 и 98%-дейтеризации образца DKTS соответственно равны -61 и +23,5° С/. Для отражения /002/ измерения проводились в интервале температур -115 ++15° С с переменным шагом в зависимости от выбираемой /температурной/ области. Время съемки одной точки ~ 20 мин.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА И ИХ ОБСУЖДЕНИЕ

На рис.1 представлено распределение интенсивности, измеренное в узле /022/ обратной решетки DKTS при температуре, существенно ниже температуры фазового перехода (T_c ~ 10°C). На рис.2 приведены распределения интенсивности в узле /002/, имеющие место в интервале температур от -115 до +15°С. Полученные данные и, в частности, характер распределения интенсивности в области температур, далеких от Т /рис.1, 2а/, находятся в полном согласии со схемой расщепления узлов обратной решетки кристалла ниже точки фазового перехода /рис.3//5/. Такой характер расщепления связан с появлением в DKTS, как и в DKDP, доменов двух $\pm S_c$ и $\pm S_b^*$ конфигураций /рис.4/, отличающихся разворотом относительно друг друга на 90°. В этом случае за счет простого сдвига по направлениям [010] и [001] узлы обратной решетки, лежащие в этих направлениях, расщепляются на три, а любой другой узел на четыре компоненты.

Для узла /002/ рассеяние излучения в образце от доменов ±S_b и ±§-конфигураций приводит к появлению соответственно централь-

DKTS при температурах, далеких от

 $T_c (T \ll T_c)$.

Рис.2. Распределение интенсивности компонент в узле /002/ кристалла **DKTS** при разных температурах: a/ -52. 6/ -1. B/ +4. r/ +10°C.

[001] ±Sb [010] Рис. 3. Схема расщепления узлов обратной решетки кристалла DKTS в результате простых сдвигов по [010] и [001] направлениям.

Рис.4. Две конфигурации доменов в сегнетоэластической фазе кристалла DKTS.

Знаки "+" и "-" при рассмотрении кристалла DKTS указывают на противоположную направленность спонтанной сдвиговой деформации в двух соседних примыкающих друг к другу доменах одной и той же конфигурации.

ной и двух боковых компонент /рис.2а/: при этом центральная компонента отвечает суммарному рассеянию от всех доменов $+S_b$ и $-S_b$ конфигураций.

Примерное равенство интенсивностей центральной и боковых компонент, наблюдаемое на рис.2а, указывает на незначительное различие величин суммарных объемов доменов $\pm S_b$ и $\pm S_c$ конфигураций, присутствующих в образце. Эта ситуация существенно отличается от имевшей место в $^{/5/}$, где соотношение доменов $\pm S_c$ и $\pm S_b$ -конфигураций в образце оказалось равным 1:8,5 /T = 80 K/. По мнению авторов $^{/5/}$, указанное соотношение не сохраняется неизменным при проведении для испытуемого образца повторного цикла "нагрев охлаждение".

Из представленного на рис.2а распределения интенсивности узла также видно, что /для этого распределения/ размещение боковых компонент относительно центральной в достаточно хорошем приближении можно считать симметричным. Это, в свою очередь, свидетельствует о том, что геометрия доменной структуры DKTS характеризуется определенным параметром - углом спонтанного сдвига, среднее значение u_{xz} которого в соответствии с методикой ^{/7/} для "осевого" узла может быть рассчитано по формуле:

$$u_{xz} = \frac{N_3 - N_1}{2N_2} tg \theta_0 ,$$

где N_1 , N_2 и N_3 - позиции боковых и центральной компонент распределения интенсивности соответственно, выраженные в единицах временных каналов; θ_o - угол Брэгга / θ_o = 45°/*. Из сопоставления распределений интенсивности в узле /рис.2/ видно, что изменение с температурой геометрии доменной структуры в образце связано лишь с изменением угла спонтанного сдвига $u_{\rm xz}$: с ростом температуры наблюдается смещение боковых компонент к централь-ной. При T $\approx 10\,^{\circ}$ С сохраняется лишь один дифракционный максимум /рис.2г/.

На рис.5 в обычном и двойном логарифмическом масштабах /врезка на рисунке/ представлена полученная нами зависимость u_{xz} от ' ($T_c - T$) /случай охлаждения образца/. Отметим хорошую воспроизводимость результатов при проведении всего цикла охлаждения и последующего нагрева образца. Видно, что ход кривой не противоречит ранее сделанному выводу о существовании в исследуемом кристалле фазового перехода II рода, а угол спонтанного сдвига (u_{xz}) в соответствии с теорией фазовых переходов II рода может быть принят за параметр порядка: сам же фазовый переход в DKTS является собственным /или, по крайней мере, квазисобственным/ сегнетоэластическим переходом.

Рис.5. Температурная зависимость угла спонтанного сдвига, найденная из анализа расщепления узла /002/: охлаждение образца /обычный и двойной логарифмический масштабы/.

Таблица

Величина углов спонтанного сдвига u_{xz} в DKTS для образцов с различным процентом дейтеризации

Образец	Угол спон- танного сдвига $B/^{\circ}/$ для темпе- ратуры $T =$ = $T_c - \Delta T$ / $\Delta T \approx 90^{\circ}C/$	Темпера- тура фа- зового перехода Т _с в /°С/	Процент дейтери- зации об- разца /% D /	Угол спон- танного сдвига u _{xz} в /°/*	Ссылка
KTS	1,27	-62	0	1,36	/10,11/
DKTS	1,33	+14	~ 85	1,43	/13/
DKTS	1,20	+12	~ 80	1,27	/12/
DKTS	1,28	+10	~ 80	1,39	Наши дан- ные
DKTS	1,47	+23,5	98	1,55	/5/

 После экстраполяции данных /5,10,12,13/ и настоящей работы в область температур, отвечающих насыщению величины угла спонтанного сдвига.

В таблице представлены величины угла спонтанного сдвига u_{xz} в DKTS с различным процентом дейтеризации образца для температур, одинаково удаленных ($\Delta T \approx 90\,^{\circ}$ С) от точки фазового перехода. В этой же таблице приведены значения u_{xz} для области температур, отвечающих насыщению величины угла спонтанного сдвига. Из таблицы видно, что найденные нами значения u_{xz} находятся в удовлетворительном согласии с данными, известными из литературы.

^{*} С помощью данной формулы угол спонтанного сдвига определяется для одной и той же конфигурации доменов.

ЗАКЛЮЧЕНИЕ

Исследование доменной структуры в DKTS - один из первых экспериментов, выполненных на дифрактометре ДH-2^{/9/}. Сравнительно большая спонтанная деформация ячейки DKTS позволила легко проследить за расщеплением узлов обратной решетки. В то же время большая величина угла спонтанного сдвига потребовала одновременной регистрации дифракционной функции в значительной области обратного пространства кристалла. Характер наблюдаемых расщеплений узлов подтвердил предположение о полной в первом приближении аналогии геометрии доменной структуры DKTS с хорошо изученной геометрией доменов в DKDP^{/6,7/}. Температурная зависимость угла спонтанного сдвига в сегнетоэластической фазе DKTS хорошо согласуется с данными, известными из литературы, и подтверждает собственный /квазисобственный/ характер сегнетоэластического фазового перехода в DKTS.

Авторы выражают признательность Г.М. Мироновой, Ле Тхи Кат Тыонг, Я.Домославскому и Н.Попа за помощь, оказанную ими в проведении эксперимента.

ЛИТЕРАТУРА

- 1. Шувалов Л.А., Иванов Н.Р., Ситник Т.К. Кристаллография, 1967, 12, с.366.
- 2. Иванов Н.Р. и др. Изв.АН СССР, сер.физ., 1975, 39, с.933; Makita Y. et al. J.Phys. Soc.Japan, 1977, 42, p.518.
- 3. Иванов Н.Р., Шувалов Л.А. Изв. АН СССР, сер.физ., 1977, 41, 4, с.656.
- 4. Hansen F., Hazell R.G., Rasmussen S.E. Acta Chem.Scand., 1969, 23, p.2561; Lehmann M.S., Larsen F.K. Acta Chem. Scand., 1971, 25 p.3859.
- 5. Iwata Y. et al. J. Phys. Soc. Japan, 1979, 47, p.922.
- Иона Ф., Ширане Д. Сегнетоэлектрические кристаллы. "Мир", М., 1965.
- 7. Balagurov A.M. et al. phys. st.sol.(a), 1979, 51, p.367.
- 8. Balagurov A.M. et al. Ferroelectrics, 1983, 48, p.163.
- 9. Frank I.M. Pacher P. Phisica, 1983, 120B, p.37.
- Makita Y., Yamaguchi Y., Suzuki S. J.Phys.Soc.Japan, 1977, 43, p.181.
- 11. Pietraszko A., Shuvalov L.A. Ferroelectrics, 1978,21,p.573.
- 12. Иванов Н.Р. Изв. АН СССР, сер.физ., 1979, 43, 8, с.1706.
- Makita Y., Osaka T., Miyazaki A. J.Phys.Soc.Japan, 1978, 44, p.225.

Рукопись поступила в издательский отдел 7 февраля 1984 года

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	p.	40	к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	p.	00	к.
д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЭВМ и их применению в теоретической физике, Дубна, 1979	3	р.	50	к.
д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3	p.	00	к.
д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	p.	00	к.
д2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2	p.	50	к.
д10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	p.	50	к.
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3	p.	60	к.
Д17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5	p.	40	к.
Д1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3	р.	20	к.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3	p.	80	к.
д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1	p.	75	к.
Д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3	p.	30	к.
ДЗ,4-82-704	Труды IV Международной школы по нейтронной физике. Дубна, 1982.	5	p.	00	К.
д2,4-83-179	Труды ХУ Международной школы молодых ученых по физике высоких энергий. Дубна, 1982.	4	p.	80	к.
	Труды УШ Всесоюзного совещания по ускорителям заряженных частиц. Протвино, 1982 /2 тома/	11	p.	40	к.
<u>Д11-83-511</u>	Труды совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике. Дубна, 1982.	- 2	p.	50	к.
Д7-83-644	Труды Международной школы-семинара по физике тяжелых ионов. Алушта, 1983.	6	р.	5	5к.
Д2,13-83-689	Труды рабочего совещания по проблемам излучения и детектирования гравитационных волн. Дубна, 1983.	2	p.	00) к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индекс	Тематика		
1.	Экспериментальная физика высоких энергий		
2.	Теоретическая физика высоких энергий		
3.	Экспериментальная нейтронная физика		
4.	Теоретическая физика низких энергий		
5.	Математика		
6.	Ядерная спектроскопия и радиохимия		
7.	Физика тяжелых ионов		
8.	Криогеника		
9.	Ускорители		
10.	Автоматизация обработки экспериментальных данных		
11.	Вычислительная математика и техника		
12.	Химия		
13.	Техника физического эксперимента		
14.	Исследования твердых тел и жидкостей ядерными методами		
15.	Экспериментальная физика ядерных реакций при низких энергиях		
16.	Дозиметрия и физика защиты		
17.	Теория конденсированного состояния		
18.	Использование результатов и методов фундаментальных физических исследований		

19. Биофизика

Балагуров А.М. и др. 14-84 Геометрия доменной структуры и зависимость угла спонтанного сдвига от температуры в сегнетоэластике КD₃(SeO₃)₂.

На нейтронном дифрактометре по времени пролета ДН-2 исследована геометрия доменной структуры сегнетоэластической фазы KD₃ (SeO₃)₂ (DKTS). Приведены результаты измерения интенсивности в нескольких узлах обратной решетки кристалла в широком интервале температур. На основании полученных данных рассчитана величина угла спонтанного сдвига в зависимости от температуры. Установлена аналогия геометрии доменной структуры DKTS с известной упаковкой доменов в кристалле KH₂ PO₄.

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1984

Перевод авторов

Balagurov A.N. et al. The Domain Packing and Temperature Dependence of the Spontaneous Shear Angle in Ferroelastic Compound KD₂(SeO₂)₂.

The domain structure in ferroelastic phase of $(SeO_3)_2(DKTS)$ compound was investigated by neutron time-of-flight diffractometry. The temperature dependence of spontaneous shear angle was determined from diffraction intensity measurements for a lot of spots in reciprocal lattice. The domain structure was found similar with that of KH_2PO_4 .

The investigation has been performed at the Laboratory of Neutron Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1984

14-84-69