

Объединенный институт ядерных исследований дубна

3513/2-80

28/7-80

14-80-240

Н.И.Балалыкин, И.Вавра, А.В.Скрыпник, В.Г.Шабратов

МИКРОСТРУКТУРА И СВЕРХПРОВОДЯЩИЕ СВОЙСТВА ТОНКИХ ПЛЕНОК **Nb-Ti**

Направлено в журнал "Металлофизика", на XXI Всесоюзное совещание по физике низких температур, Харьков.

Работа посвящена исследованию взаимосвязи между сверхпроводящими характеристиками и микроструктурой пленок сплава Nb-Ti разного состава /с содержанием Ti от 30 до 66 ат.%/.

Пленки приготовлялись совместным вакуумным напылением Nb и Ti из отдельных электронно-лучевых испарителей в вакууме $P < 6 \cdot 10^{-5}$ Па / $< 5 \cdot 10^{-7}$ мм рт.ст./ со скоростью 0,1 мкм/мин. В качестве подложек использовались медная фольга толщиной 10 мкм и монокристалл кремния с пленкой термической окиси кремния толщиной 1 мкм. Температура подложек во время напыления была равна 350°C, толщина пленок Nb-Ti составляла 0,8-1,5 мкм.

Структура пленок исследовалась с помощью трансмиссионного электронного микроскопа JEM-7. Их состав и равномерность его распределения по толщине пленки определялись методом упругого рассеяния частиц ³ Не с энергией 3 МэВ^{/1/}.

Сверхпроводящие характеристики пленок (T_k , $j_k B_{k2}$) измерялись резистивным методом. С целью проверки однородности состава пленки и наличия других сверхпроводящих фаз, кроме основной, критическая температура T_k образцов одновременно определялась индуктивным методом/2//с точностью не хуже 0,05 К/. Критический ток I_k и B_{k2} измерялись на образцах в виде полосок шириной 1 мм, расположенных перпендикулярно внешнему магнитному полю. Критический ток образцов измеряли при температуре 6 К в сверхпроводящем соленоиде с магнитной индукцией до 7 Т в момент появления на потенциальных контактах напряжения 10^{-6} В. Поле B_{k2} определяли по кривой зависимости сопротивления полоски от магнитного поля при постоянном малом измерительном токе /100 мкА/ и различных температурах экстраполяцией линейной части кривой к нулю.

Для всех исследованных пленок характерным является средний размер зерна 100⁺250 нм. Плотность наблюдаемых дефектов /границы зерен, выделения, дислокации/ сильно зависит от состава образца. Структура пленок, напыленных на медную подложку, отличается от структуры пленок, напыленных на кремний, в основном /приблизительно на порядок/ большей плотностью дислокаций. Вероятно, это связано с различием коэффициентов линейного расширения Сu и Nb-Ti.

У пленок с содержанием Ti более 60 ат.% наблюдаются выделения фазы a — Ti /размером около 100 нм/, которые находятся в некоторых тройных точках структуры /на стыке трех границ

Объектенный институт адерных неследований **БИБЛИОТЕНА**

1

<u>Рис .1</u>. Микроструктура Nb-Ti пленок разного состава: а/ 66 ат.% Ti , б/ 40 ат.% Ti, в/ 34,5 ат.% Ti.

зерен / - <u>рис.1а.</u> Зерно почти свободно от дислокаций, но в нем находятся выделения размером ~50 нм, структуру которых определить не удалось.

Для пленок с содержанием 45:60 ат.% Ті характерна малая плотность дислокаций $/~10^{7}$ см $^{-2}$ / и средний размер зерна 230÷250 нм. С ростом содержания Nb плотность дислокаций повышается и в структуре появляются дислокационные петли. Например, у образца с 40 ат.% Ті плотность дислокаций равна $1.5 \cdot 10^{10}$ см $^{-2}$ /рис.1б/. В пленках с содержанием Ti < 38 ат.% понижается средний размер зерна и в структуре наблюдается большое количество дислокационных петель диаметром 10-15 нм. Плотность дислокаций - порядка 10¹¹ см⁻² /рис.1в/.

При измерении кривой перехода /с 4,22 до 10 К/ наблюдается только основной переход, что свидетельствует об однородности пленки. Это подтвердилось и исследованием элементного состава пленок по толщине. Переход от наблюдаемых выделений α -Ti, видимо, находится ниже 4,2 К ^{/3/} В таблице приведены значения критической температуры и ширина перехода некоторых характерных образцов. Результаты измерений j k /при T=6 К/ и В k2 пока-

Таблица						
№ образца	1	2	3	4	5	r
Содержание Ті /ат.%/	66	62	51	34,5	31,5	
т _к /К/	8,80	8,94	9,62	9,57	9,42	
ΔT _k /K/	0,11	0,08	0,04	0,05	0,05	
F _{р max} /н/м ³ / 10 ⁻⁹	2,12	2,26	2,7	1,86	1,24	•

заны на <u>puc.2</u>. Там же даны кривые зависимости силы пиннинга F_p от приведенной магнитной индукции $b = B/B_{k2} / puc.2B/$, из хода которых видно смещение их максимума от b=0,31 до b=0,39 с уменьшением содержания Ti. Согласно результатам исследования структуры и с учетом данных для кривых $F_p = f(b)^{/4/}$ это можно объяснить следующим образом:

1. Пиннинг в образцах с содержанием Ті 66÷60 ат.% осуществляется на выделениях α -Ті и границах зерен. Так как плотность выделений α -фазы меньше плотности границ зерен, пиннинг на выделениях имеет место при меньших полях / F_{pmax} при b = 0,32/.

2. Пиннинг на границах зерен осуществляется в пленках с содержанием Ті 45÷55 ат.%, так как в них выделения a-фазы не наблюдались и плотность дислокаций низка /~10⁷ см⁻² /.

3. Для пленок с содержанием Ti менее 40 ат.% пиннинг осуществляется на границах зерен и дислокациях /максимум смещен к 0,39/. Сила пиннинга уменьшается из-за изменения характерных параметров твердого раствора Nb-Ti, прежде всего соотношения размеров ξ /длина когерентности/ и дефектов.

Наиболее высокие значения j_k достигнуты для пленок Nb-Ti с содержанием титана 45÷55 ат.%. Дальнейшее повышение j_k возможно осуществить путем повышения плотности дефектов в пленках /напыление на холодную подложку, увеличение скорости конденсации, облучение, введение примесей и т.д./,

Авторы благодарят сотрудника ЭИ САН /ЧССР/ Ш.Бенячку за помощь при разработке индуктивного метода измерения критической температуры.

an an the state of t The state of the state

2

Рис.2. а/ Зависимость критической плотности тока j_k от магнитной индукции B; б/ зависимость B_{k2} от температуры T; в/ зависимость F_p от приведенной магнитной индукции b. + -1, Δ -2, • -3, o-4, =-5.

ЛИТЕРАТУРА

- 1. Бух Ю. и др. ОИЯИ, P14-10446, Дубна, 1977.
- Головашкин А.И., Онучкин В.М. Краткие сообщения по физике, 1971, №4, с.48.
- Савицкий Е.М. и др. Сверхпроводящие материалы.
 - "Металлургия", М., 1976.
- Кемпбелл А., Иветс Дж. Критические токи в сверхпроводниках. "Мир", М., 1975.

