СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубще

MANA SALAN

312520

X-383

14 - 5189

16/x1-

К. Хенниг, К. Темпельхофф, З.А., Усманова

О ПРОЦЕССАХ ВЗАИМОДЕЙСТВИЯ УЛЬТРАХОЛОДНЫХ НЕЙТРОНОВ С ВЕЩЕСТВОМ

14 - 5189

К. Хенниг, К. Темпельхофф, З.А. Усманова

О ПРОЦЕССАХ ВЗАИМОДЕЙСТВИЯ УЛЬТРАХОЛОДНЫХ НЕЙТРОНОВ С ВЕЩЕСТВОМ

8553/2 NP

1. В ведение

На основе работы Ф.Л. Шапиро^{/1/}, в которой указывается возможность более точного измерения некоторых элементарных свойств нейтрона с помощью ультрахолодных нейтронов (УН), в Лаборатории нейтронной физики началась разработка методики извлечения и удержания УН. Методика основана на известном свойстве нейтронов достаточно низкой энергии испытывать полное отражение от стенок при любых углах падения/2/. Для обычных материалов этот эффект имеет место при скоростях нейтронов меньше 10 м/сек.

Первые опыты показали³, что с помощью изогнутой медной трубы возможно получать на импульсном реакторе ИБР-1 УН с максимальной скоростью $v_{\text{макс.}} \approx 5,7$ м/сек, которая соответствует энергии $\approx 10^{-7}$ эв и длине волны ≈ 500 Å. Однако их поток $\phi_{\text{УН}}$ очень мал. В^{/3/} получено значение $\phi_{\text{УH}} \approx 10^{-2}$ н.см⁻² сек⁻¹. Поток тепловых нейтронов в замедлителе, из которого УН выходили в трубу, составлял $\phi_0 = 1, 6.10^{10}$ н.см⁻².сек⁻¹. При наилучших условиях извлечения УН из замедлителя поток УН оценивается из максвелловского распределения тепловых нейтронов и при $\phi_0 = 10^{14}$ н.см⁻².сек⁻¹ $\phi_{\text{УH}} \approx 1, 1.10^3$ н.см⁻².сек⁻¹. Выбранное ϕ_0 соответствует потоку стационарного реактора мощности ≈ 10 Мвт. В проектируемом реакторе ИБР-2 ожидаемый поток тепловых нейтронов на поверхности замедлителя в максимуме импульса при частоте

5 сек⁻¹ составит $\phi_0 \approx 10^{16}$ н.см⁻².сек⁻¹ /4/ и соответственно больший поток УН $\phi_{\rm YH}$ в импульсе. Учитывая современные возможности, разумно исходить из величины потока УН $\phi_{\rm YH} \approx 10 + 100$ н см⁻² сек⁻¹ для оценки необходимого времени измерения, которое потребуется для проведения исследований задач по физике твердого тела. Проведенные нами оценки показывают, что задача может состоять только в исследовании полного сечения рассеяния σ . При этом утрачивается преимущество использования тепловых нейтронов по сравнению с другими методами исследования квазичастиц, а именно, возможность одновременного определения передачи импульса и энергии.

Подробное рассмотрение различных процессов взаимодействия УН с веществом показывает (см. раздел 2), что перспективно исследование неупругих процессов, которые связаны со спиновой зависимостью потенциального рассеяния ядра в случае невырожденных спиновых уровней. Проблемы, связанные с взаимодействием УН с ядерным спином, близки к проблемам, изучаемым методами парамагнитного резонанса, ядерного резонанса, эффекта Мёссбауэра и др.

2. Процессы взаимодействия ультрахолодных нейтронов с твердым телом

2.1. Общие замечания

Поскольку величины полного сечения рассеяния для различных процессов в области энергии нейтронов $E < 10^{-4}$ эв почти совсем не исследованы, придется их оценивать на основе теоретических соображений. Существенную роль играют сечения следующих процессов: сечение поглощения σ_{a} , сечение парамагнитного рассеяния σ_{a}

упругого некогерентного рассеяния σ_y^{HK} и сечение неупругого когерентного и некогерентного рассеяний σ_{Hy}^{Kor} и σ_{Hy}^{HK} . Кроме этого, надо добавить процесс полного отражения, который испытывает УН достаточно низкой энергии при любом угле падения на поверхность вещества или магнитного поля^{/5/}. Условием для возникновения последнего процесса этого является неравенство:

$$\mathbf{E}_{\mathbf{y}\mathbf{H}} < \mathbf{E} = \frac{\mathbf{h}^2}{2\pi \mathbf{m}} \mathbf{N} \mathbf{b}_{\mathbf{KOF}} + \mu_{\mathbf{n}} \mathbf{B} , \qquad (1)$$

где Е_{ун} – энергия УН, m – масса нейтрона, N – число ядер в единице объема вещества, b_{ког} – когерентная амплитуда рассеяния на связанном ядре, μ_n – магнитный момент нейтрона и В – магнитная индукция среды. Первое слагаемое имеет для Ве , С , Al, Fe, Cu , Zn , Pb и др. порядок 10⁻⁷ эв (см. таблицу 7 в^{/5/}), а второе $\leq 10^{-7}$ эв, если В ≤ 20 Krc.

Рассмотрим остальные процессы подробнее.

2.2. Сечение поглощения

ł

В случае медленных нейтронов (энергий $10^{-4} + 1$ эв) основным каналом распада промежуточного ядра является испускание *y*-кванта, а это значит, что сечение поглошения $\sigma_a \approx \sigma_{n,y}$. $\sigma_{n,y}$ описывается формулой Брейта-Вигнера^{/5,6/}. Для энергий нейтрона меньше резонансной и при условии, что резонансная энергия больше ширины резонанса, получается $\sigma_a \approx \Gamma_y / v$, где v - скорость нейтрона и Γ_y - радиационная ширина. В области медленных нейтронов $\Gamma_y \approx$ const. Чтобы получить значения σ_a для энергии УН, необходимо экстраполировать по закону 1 / vвеличины σ_a , данные в^{/6,7/} для нейтронов тепловой энергии. Для боль-

шинства элементов (изотопов) $\sigma_{a} > 100$ барн для УН. Исключением являются, как правило, легкие элементы: D, Be, C, O, F, Mg, Al, Si, P, Zr и также Pb, Bi и др. Однако точность этих оценок зависит от применимости экстраполирования σ_{a} по закону 1/vдля рассматриваемого ядра, что определяется параметрами резонансов. На графиках $\sigma_{a}(E) = \frac{77}{100}$ видно, в какой мере осуществляется для выбранного изотопа ход σ_{a} по 1/v при низких энергиях.

До сих пор экспериментально исследовано поведение σ_{x} только для Au в области низких энергий $(10^{-3} \text{ до 0,5.}10^{-6} \text{ эв})^{/8/}$. Результаты показывают относительно хорошее поведение σ_{x} по закону 1/v (σ_{x} изменяется от 500 барн при энергии нейтронов 10^{-3} эв до 20000 барн при $E_{n} = 0,5.10^{-6}$ эв).

2.3. Сечение парамагнитного рассеяния

I

Сечение рассеяния неполяризованных нейтронов на парамагнитном атоме в предельном случае нейтронов больших длин волн ($\lambda > 10$ Å) имеет вид (см. стр. 33 в^{/5/})

$$\sigma_{\text{mapa}} = \frac{8\pi}{3} (r_0 \gamma)^2 S(S+1) = 1,26 S(S+1) [\text{GapH}] , \qquad (2)$$

где _{го} =e²/m_ec² - классический радиус электрона, у - величина магнитного момента нейтрона, выраженная в ядерных магнетонах, S - спин атома.

Для простейшего случая S = 1/2 получается $\sigma_{\text{пара}} = 0,94$ барн. Однако надо добавить, что уравнение (2) справедливо только в том случае, если уровни электронов вырождены, иначе могут возникнуть неупругие процессы с изменением энергии нейтронов. В работах^{'8/} найденные спектры интерпретируются на основе этого эффекта.

Из теории тонкой и сверхтонкой структуры парамагнитных ионов известно, что энергетические уровни, связанные с магнитным моментом изолированного парамагнитного иона, могут расщепляться из-за разных процессов взаимодействия. Порядок величины расщепления различен для различных процессов: для взаимодействия с электрическим кристалличес-_≈ 10⁻³ + 1 эв, для спин-орбитального взаимоким полем окружения действия $\approx 10^{-2}$ эв и $\approx 10^{-1}$ эв в случае 3d и 4f электронов соответственно, для спин-спинового взаимодействия ≈ 10⁻⁴ эв и для сверхтонкого взаимодействия ≈ 10⁻⁵ + 10⁻⁷ эв . Представление об "изолированном ионе" справедливо, если концентрация парамагнитных ионов не превышает 0.1 мол%. В противном случае диполь-дипольное взаимодействие между ионами с 3d -электронами ведет к сильному уширению резонансных линий, наблюдаемых электронным парамагнитным резонансом, что может сильно препятствовать исследованию разных электронных переходов с энергией < 10⁻⁴эв.

Так как для исследования примесных ионов в твердом теле с помощью имеющихся потоков медленных нейтронов требуется концентрация ионов 1 мол% и больше, применение нейтронов для подобных исследований является нецелесообразным. Однако надо иметь в виду, что УН могут нагреваться вследствие взаимодействия их с электронами, которые находятся на разных энергетических уровнях. Кроме того надо заметить, что сечение парамагнитного рассеяния в случае одного возбужденного уровня и УН одной энергии пропорционально отношению импульсов нейтронов р'/р, где р' и р – импульсы нейтронов после и до рассеяния соответственно. Это ведет к сильному увеличению сечения парамагнитного рассеяния,

7

ì

например, в \approx 30 раз, если энергия УН $\approx 10^{-7}$ эв, а энергия электронного перехода $\approx 10^{-4}$ эв. (В случае медленных нейтронов и температур

300°К такого являения нет, так как высоко лежащие энергетические уровни пустые).

В случае редкоземельных элементов наблюдения электронных переходов с энергией $\leq 10^{-3}$ эв производить легче, чем в случае элементов группы железа, так как 41 -электроны хорошо заэкранированы электронами внешних оболочек и ширина наблюдаемых уроней мала. При этом надо иметь в виду, что с помощью нейтронов возможно исследовать металлы и сплавы. Такие исследования с помощью других методов значительно затруднены.

2.4. Сечение упругого рассеяния

При рассмотрении упругого рассеяния для УН сечение когерентного упругого рассеяния равно нулю, потому что брэгговское рассеяние отсутствует, если $\lambda > 2 d_{MAKC}$, λ – длина волны нейтронов и d_{MAKC} – максимальное межплоскостное расстояние. Для обычных неорганических материалов $d \ge 1 \text{ Å}$. Очень интересным процессом при обсуждении возможностей использования УН в физике твердого тела является некогерентное рассеяние, когда нельзя пренебречь расщеплением спиновых уровней ядер. Это значит, что рассеяние неупругое. Обозначим сечение процесса НК

Для вычисления $\sigma \frac{cпин}{Hy}$ используется формализм псевдопотенциала Ферми, изложенный, например, в $^{/5,10/}$. Применение этого формализма для очень низких энергий нейтронов справедливо потому, что выполняется условие $r_0 \ll d$ и $r_0 \ll \lambda$, r_0 – радиус действия ядерных сил

 $(\leq 10^{-12} \text{см}), d$ – расстояние между ближайшими ядрами в решетке $(\geq 10^{-8} \text{см}), \lambda$ – длина волны нейтрона ($\approx 5.10^{-6} \text{см}$ для УН). Запишем потенциал взаимодействия нейтрона с ядром в виде (см. / 10/ уравн. (14.1) и (14.2)):

$$V_{\ell}(\vec{r}_{n}) = \frac{2\pi\hbar^{2}}{m} \{A_{\ell} + B_{\ell}(\vec{S}_{n},\vec{I}_{\ell})\}\delta(\vec{r}_{n}-\vec{R}_{\ell}), \qquad (3)$$

где \vec{S}_n – спин нейтрона и \vec{I}_ℓ – спин ядра в узле решетки ℓ (в дальнейшем не будем учитывать колебания решетки). Вводим

$$\mathbf{a}_{\ell} \stackrel{\mathbf{\varphi} \phi \phi}{=} \eta_{\ell}^{+} \mathbf{a}_{\ell}^{+} + \eta_{\ell}^{-} \mathbf{a}_{\ell}^{-} = \mathbf{A}_{\ell} + \mathbf{B}_{\ell} (\vec{\mathbf{S}}_{n} \vec{\mathbf{I}}_{\ell}) , \qquad (4)$$

где (см. ^{/5/} ур. (1.1.47) и (1.1.48)) проекционные операторы

$$\eta_{\ell}^{+} = \frac{I_{\ell} + 1 + 2(\vec{I}_{\ell} \vec{S}_{n})}{2I_{\ell} + 1}, \quad \varkappa \qquad \eta_{\ell}^{-} = \frac{I_{\ell} - 2(\vec{I}_{\ell} \vec{S}_{n})}{2I_{\ell} + 1}$$

т.е.

$$A_{\ell} = \frac{(I_{\ell}+1)a_{\ell}^{+}+I_{\ell}a_{\ell}^{-}}{2I_{\ell}+1} \times B_{\ell} = \frac{2(a_{\ell}^{+}-a_{\ell}^{-})}{2I_{\ell}+1}, \quad (5)$$

 \vec{a}_{ℓ} - длина рассеяния с параллельными спинами \vec{S}_n и \vec{I}_{ℓ} , \vec{a}_{ℓ} с антипараллельными спинами \vec{S}_n и \vec{I}_{ℓ} . Общая формула (см. /10/ ур. (22.1)) с учётом (3) дает для неполяризованных нейтронов

$$\frac{d^{2}\sigma}{d\Omega dE'} = \frac{1}{2\pi h} \frac{p'}{p} \sum_{\ell\ell'} e^{iq(\ell-\ell')} \{A_{\ell'} A_{\ell'} 2\pi\delta(\omega) + \frac{1}{4} B_{\ell'} B_{\ell'} \sum_{\alpha} d_{\ell'} |I_{\ell'} | A_{\ell'} | A_{\ell'}$$

где

$$< \mathbf{I}_{\ell}^{a} | \mathbf{I}_{\ell'}^{a} > \omega = \int_{-\infty}^{\infty} d\mathbf{t} < \mathbf{I}_{\ell}^{a} | \mathbf{I}_{\ell'}^{a}(\mathbf{t}) > e^{i\omega \mathbf{t}} .$$
 (7)

Выражение (7) – Фурье-компонента корреляционной функции ядерных спинов, р и р' – импульсы нейтронов до и после рассеяния, $\omega = \frac{1}{h} (E_p - E_p)$ и $\vec{q} = \vec{p} - \vec{p}$ – изменение энергии и импульса нейтронов и a = x, y, z.

Первое слагаемое в скобках выражения (6) не учитывает спиновую зависимость ядерных сил и дает известные когерентные и некогерентные (только по изотопам) вклады в значения сечения упругого рассеяния. В дальнейшем рассмотрим только процессы, описываемые вторым слагаемым, в том случае, когда необходимо учитывать расщепление ядерных уровней.

Так как между ядерными спинами нет корреляций, следует $< I_{\ell}^{a} \mid I_{\ell}^{a} > = \delta_{\ell} < I_{\ell}^{a} \mid I_{\ell}^{a} >$ (8)

И

$$\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}\Omega\,\mathrm{d}E'} = \frac{1}{2\pi\,\mathrm{h}}\,\frac{\mathrm{p}'}{\mathrm{p}}\,\frac{1}{4}\,\sum_{\ell,\alpha}\,B_{\ell}^{2} < I_{\ell}^{\alpha} + I_{\ell}^{\alpha} >_{\omega} \,. \tag{9}$$

Рассмотрим теперь модель свободных спинов в поле **ff**^z . Гамильтониан, который описывает взаимодействие магнитного момента ядра с магнитным полем, имеет вид

$$\mathbf{H} = -\mu \mathbf{H}^{\mathbf{z}} \sum_{\ell} \mathbf{I}_{\ell}^{\mathbf{z}} . \tag{10}$$

Вычисление корреляционной функции (8) дает:

$$< I_{\ell}^{x} | I_{\ell}^{x} >_{\omega} = < I_{\ell}^{y} | I_{\ell}^{y} >_{\omega}$$

$$= \pi < I_{\ell}^{z} > \{ \mathbf{n}(\Delta) \delta (\omega - \Delta) + (\mathbf{l} + \mathbf{n}) \delta (\omega + \Delta) \}.$$
(11)

где
$$\Delta = \mu H^{z}$$
 и $n(\Delta) = \frac{1}{e^{\Delta/kT} - 1}$.
 $< I_{\ell}^{z} | I_{\ell}^{z} >_{\omega} = 2\pi \delta(\omega) < (I_{\ell}^{z})^{2} > .$ (12)

Определим намагниченность в пределе $\Delta <<$ KT , т.е. n(Δ) = KT / Δ и

$$\langle I^{z} \rangle = \frac{1}{3} \frac{\Delta}{KT} I(I+1) \pi \langle (I^{z})^{2} \rangle = \frac{1}{3} I(I+1) .$$
 (13)

Следовательно, для (9) получается с (11)

ł

$$\frac{d^{2}\sigma}{d\Omega dE'}_{Hy} = \frac{1}{2\pi h} \frac{p'}{p} - \frac{N}{4} B^{2} \frac{2I(I+1)}{3} \pi \{\delta(\omega - \Delta) + \delta(\omega + \Delta)\}$$
(14)

ис (12)

спин

$$\frac{d^2 \sigma}{d\Omega \ dE'} = \frac{1}{2\pi \ h} \frac{p'}{p} \frac{N}{4} B^2 \frac{2I(1+1)}{3} \pi \ \delta(\omega) . \qquad (15)$$

При суммировании по *l* предполагалось, что образец содержит только N ядер одного изотопа.

Если р'=р и Δ = 0, выражения (14) и (15) совпадают с известными результатами для некогерентного упругого рассеяния с перекидкой и без перекидки спина.

Обсудим формулу (14) подробнее. Если расшепление спиновых уровней (как в нашем примере) линейно зависит от I и действует правило отбора $\Delta m = \pm 1$, то падающий нейтрон может рассеиваться с приобретением или с отдачей энергии Δ . Интегрируя выражение (14) по dE и d Ω , получаем

$$\sigma \frac{C\Pi H}{HY} = C \left\{ \sqrt{1 + \frac{\Delta}{E_0}} + \sqrt{1 - \frac{\Delta}{E_0}} \right\}, \qquad (16)$$

где $C = \frac{\pi}{3} NB^2 I (I + I)$ и $E_0 = \frac{p^2 h^2}{2m} = E_0 \Delta$ – энергия падающих нейтронов. На рис. 1 приведены соответствующие кривые: а -нейтрон приобретает энергию, b - нейтрон отдает энергию, c - сумма обеих кривых и d - сечение рассеяния без перекидки спина, $\sigma' = \sigma \frac{cnuh}{uv}/C$. Кривая а показывает, что вследствие множителя р'/ р $\sigma \frac{cnuh}{Hy} \approx 1/v$ для энергии нейтронов меньше энергии расщепления спиновых уровней. В качестве примера приводим несколько оценок. Для этого напишем постоянную С в виде C = $\frac{1}{3}$ N 4 π b $\frac{2}{HK}$. Величины 4 π b $\frac{2}{HK}$ можно найти, например, в /6/. В случае рассеяния УН на водороде, имеюшем самое большое некогерентное сечение рассеяния (~ 80 барн), $\sigma_{\rm Hy}^{\rm CRNH}$ может быть в 10 раз больше, чем $\sigma_{\rm a}$, если ${\rm E}_0^{\prime} \approx 10^{-2}$. Даже в случае $E_0' \gtrsim 1 - \sigma \frac{c \pi u H}{H y} \approx \sigma_{A}$. В случае рассеяния УН на ванадии и при тех же значениях $E_0' \approx 10^{-2} \sigma_{a} >> \sigma_{Hy}^{CRNH}$. Из числа элементов с $\sigma_{\star} \approx 1$ барн (см. раздел 3) получаем $\sigma_{\mu\nu}^{Cnuh} > 1$ барн только для дейтерия. Таким образом видно, что особенно удобными для исследования расшепленных спиновых уровней оказываются водород и дейтерий.

2.5. Сечение неупругого рассеяния

В разделе 2.4 рассматривалась та часть неупругого рассеяния, которая связана с изменением энергии нейтронов при перекидке ядерных спинов. В этом разделе проведем оценки величин сечений рассеяния, которые обусловлены рождением и уничтожением фононов, для более широкого диапазона энергии нейтронов, чем обычно.

Рассматриваем решетку Бравэ и используем динамическую модель Дебая. Интегральные сечения однофононных и двухфононных некогерентных процессов даны, например, в^{/5/} стр. 168 и 517. Оригинальной работой является ^{/11/}. В случае $E_0 \ll KT \ll K\theta_D$,где E_0 – энергия нейтронов

Рис. 1. Зависимость полного сечения потенциального рассеяния разных процессов от энергию падающих нейтронов. E_0' нормировано на энергию расщепления спиновых уровней Δ . Кривая а – нейтрон приобретает энергию Δ , b – нейтрон отдает энергию Δ , c – сумма кривых а и b , d – сечение рассеяния без перекидки спина.

до рассеяния, Т – температура образца и ^θр- температура Дебая, получаются следующие выражения для рождения одного фонона

$$\sigma_{1}^{0} \approx \left(\frac{\mathbf{m}}{\mathbf{M}}\right) \left(\frac{\mathbf{E}}{\mathbf{K}\theta_{D}}\right)^{2} \left(\frac{\mathbf{T}}{\theta_{D}}\right) , \qquad (17)$$

для уничтожения одного фонона

$$\sigma_{1}^{1} \approx \left(\frac{\mathbf{m}}{\mathbf{M}}\right) \left(\frac{\mathbf{T}}{\theta_{D}}\right)^{8} \left(\frac{\mathbf{KT}}{\mathbf{E}_{0}}\right)^{\frac{1}{2}}, \qquad (18)$$

для рождения двух фононов

$$\sigma_2^{0} \approx \left(\frac{m}{M}\right)^2 \left(\frac{E_0}{K\theta_D}\right)^4 \left(\frac{T}{\theta_D}\right)^2, \qquad (19)$$

для рождения двух фононов и уничтожения одного фонона

$$\sigma_{2}^{1} \approx \left(\frac{m}{M}\right)^{2} \left(\frac{E}{K\theta_{D}}\right)^{2} \left(\frac{T}{\theta_{D}}\right)^{2} \left(\frac{E}{KT}\right)^{\frac{1}{2}}$$
(20)

и для рождения двух фононов и уничтожения двух фононов

$$\sigma_2^2 \approx \left(\frac{\mathbf{m}}{\mathbf{M}}\right)^2 \left(\frac{\mathbf{T}}{\theta_{\mathrm{D}}}\right)^6 \left(\frac{\mathbf{KT}}{\mathbf{E}_0}\right)^{\frac{1}{2}}, \qquad (21)$$

где т и М – масса нейтрона и рассеивающего ядра соответственно. Двухфононные процессы и σ_1^0 очень сильно зависят и от температуры и от энергии падающих нейтронов, так что для маленьких энергий и температур их значениями сечения рассеяния по сравнению со значениями σ_1^1 можно пренебречь. Численные расчёты для σ_1^1 проведены по формулам:

$$\sigma_{1}^{1} = 24 \operatorname{s} \left(-\frac{\mathrm{m}}{\mathrm{M}}\right) \left(\frac{\mathrm{E}_{0}}{\mathrm{K}\theta_{\mathrm{D}}}\right)^{8} \iint \mathrm{d}y \ \mathrm{d}\xi \ \mathrm{e}^{-2\mathrm{w}} -\frac{\eta^{8} \xi}{\exp\left(\frac{\xi \mathrm{E}_{0}}{\mathrm{K}\mathrm{T}}\right)}$$
(22)

1.724

где

$$\mathbf{e}^{-2\mathbf{W}} = \exp\left\{-24\left(\frac{\mathbf{m}}{\mathbf{M}}\right)\left(\frac{\mathbf{E}_{0}}{\mathbf{K}\boldsymbol{\theta}_{\mathrm{D}}}\right)\eta^{2}\mathbf{D}\left(-\frac{\mathbf{T}}{\boldsymbol{\theta}_{\mathrm{D}}}\right)\right\},\qquad(23)$$

где

$$D(Y) = \frac{1}{4} + Y^{2} Q(\frac{1}{Y}), \quad Q(\frac{1}{Y}) = \int_{0}^{1/Y} dz \ z(e^{z}-1)^{-1} \quad (24)$$

$$H = s = 4\pi b_{HK}^{2}.$$

Область интегрирования представляется неравенствами:

$$\frac{1}{2} \left(\sqrt{1+\xi} -1 \right) < \eta < \frac{1}{2} \left(\sqrt{1+\xi} +1 \right) ,$$

$$0 < \xi < \left(\frac{\widetilde{K}\theta_{D}}{E_{0}} \right) .$$
(25)

Результаты интегрирования с помощью вычислительной машины (использовался алгоритм 32a в^{/12/}) представлены на рис. 2. При этом выбрано m / M= 0,1, T / $\theta_{\rm D}$ = 0,3 (пунктирная кривая) и T / $\theta_{\rm D}$ = 0,02 (сплошная кривая). Кроме σ_1^1 представлены на рис. 2 кривые для σ_1^0 , σ_2^0 , σ_2^1 и σ_2^2 , взятые из^{/5/}. Для них T / $\theta_{\rm D}$ имеет значения 0,3 и 0,02, a $-\frac{\rm m}{\rm M}$ ≈ 0,1. σ_2^1 , σ_2^0 и σ_2^2 представлены на рис. 2 только для $E_0/{\rm K}\theta_{\rm D} \approx 1$. Видно их численное уменьшение с уменьшением энергии E_0 . Однако при достаточно низких энергиях σ_2^2 опять растет (21), но остается всегда на несколько порядков меньше σ_1^1 .

Интегральные сечения фононных когерентных процессов можно оценивать по формулам, данным в^{/11/}. Оказывается, что для энергий падающий нейтронов меньше 10⁻³

$$\sigma_{1 \text{ KOF}}^{1} \approx 1/v \quad , \tag{28}$$

15

à

Рис. 2. Зависимость полного сечения фононных процессов от энергии падающих нейтронов. Пунктирная кривая для Т / $\theta_{\rm D}$ = 0,3 и сплошная кривая для Т / $\theta_{\rm D}$ 0,02.

 $\sigma_{1 \ \text{KOF}}^{1} / \text{S} \approx \sigma_{1 \ \text{HK}}^{1} / \text{s}$, где $\text{S} = 4\pi \ b_{\text{KOF}}^{2}$, $\text{s} = 4\pi \ b_{\text{HK}}^{2}$; b_{KOF} и b_{HK}^{-} амплитуды когерентного и некогерентного рассеяния соответственно. Соотношение (28) удовлетворяется для интересующих нас значений величин температуры. В рамках использованного приближения с помошью рис. 2 и значения b_{KOF} и b_{HK} для определенного изотопа можно оценить величину полного сечения для уничтожения одного фонона в зависимости от величины соотношения T / θ_{D} .

3. Ультрахолодные нейтроны и проблемы физики твердого тела Из проведенного в разделах 2.1 + 2,5 рассмотрения следует, что УН могут быть использованы для изучения расщепления ядерных уровней в диапазоне 10⁻⁷ + 10⁻⁵ эв. Не принимая во внимание некогерентные рассеиватели Н и V без учёта множителя р //р (см. раздел 2.4), нельзя ожидать о Спин больше нескольких барн. (Влияние значения энергетического расщепления спиновых уровней на о спин показано на рис. 1). Однако для большинства изотопов значение сечения поглощения при энергии УН во много раз больше, чем значение о спин, например, для Н. Ne, Na, P, Zn, Sn σ_a ≈ 100 барн, для Fe, Ni, Cr, N, Ga, Ge, V, Mn $\sigma_{\rm a} \approx 10^3$ барнидля Со, Cl $\sigma_{\rm a} \approx 10^4$ барн. Только для D , Be , C , O , F σ ≥1 барн. Оценки раздела 2.4 показывают, что особенно выгодными элементами для исследования расшепленных спиновых уровней являются водород и дейтерий (см. табл. 1). В таблице і содержатся основные характеристики взаимодействия нейтронов с ядрами для элементов, наиболее часто встречающихся в магнит-

\$

Таблица І

Эле- мент))) (отоп \$)	ь _{ког} (10 ⁻¹² с)	^{° ког} (барн)	^о ког + о (барн)	нк σ _м (1.08 Å (барн)		μ () () (0 ℓ·10 ⁻²⁴ cm ²)	σ (500 Å барн) 🕷 (без σ	₩ _n) (c σ _n)
Ţ		2	3	4	5	6 7		8	9	10	II	12
H			-0,374	I,79 <u>+</u> 0,02	8I,5 <u>+</u> 0,4							
	HI((100)				(327 <u>+</u> 0,2)10 ⁻³	I/2	2,79279	-	150	0,7	0,4
	₽ ² ((0,015)	0,65	5,4	7,6	(0,46 <u>+</u> 0,10)10	I	0,857348	2,82.10 ³	0,2	0,2	0,2
, Li			-0,18	0.40 <u>+</u> 0,03	I,2 <u>+</u> 0,3	40				20000	0,4	10-4
	Li ⁷	(92,48)) -0,2I	0,80 <u>+</u> 0,05	I,4 <u>+0</u> ,2	(33 <u>+</u> 5)10 ⁻³	3/2	3,25628	-4,2.10-2	16,5	0,3	6.10-2
1.9K			0,35	I,5 <u>+</u> 0,I	2,2 <u>+</u> 0,I	2,07 <u>+</u> 0,07				1000	0,2	I.10 ⁻³
23V			-0, 0 51	0,032 <u>+</u> 0008	5,13 <u>+</u> 0,02	4,98 <u>+</u> 0,02				2500 [.]	0,7	3.10-4
24 ^{Cr}			0,352	I,56 <u>+</u> 0,03	4,I <u>+</u> 0,3	3,I <u>+</u> 0,2				1500	0,4	3.10 ⁻⁴
. 25 Ma	Ma ⁵⁵	(100)	-0,36	I,7 <u>+</u> 0,1	2,0 <u>+</u> 0,I	13,2 <u>+</u> 0,1	5/2	3,4610	0,355	6600	0,1	2.10 ⁻⁵
	Fe 57	(2,17)) 0,23	0,64 <u>+</u> 0,04	2,0 <u>+</u> 0,5	2,5 <u>+</u> 0,2	I/2	0,0905	-	1250	0,5	4.10-4
27Co	Co 59	(100)	0,25	1,00 <u>+</u> 0,06	6 <u>+</u> I	37,I <u>+</u> I,0	7/2	4,6388	0,5	19000	0,6	3.10 ⁻⁵
28 Ni			1,03	13,2 <u>+</u> 0,2	18,04 <u>+</u> 0,05	4,8 <u>+</u> 0,2			· · · · · · · · · · · · · · · · · · ·	2500	0,2	10-4
29 Cu				7,4 <u>+</u> 0,2	8,0 <u>+</u> 0,I	3,77 <u>+</u> 0,03				2000	0,05	2.10-5

X

		_				_					
I	2	3	4	5	6	7	8	9	10	II	12
88 As /	As ⁷⁶ (I00)		5,0 <u>+</u> 0,3	8 <u>+</u> 1	4,3 <u>+</u> 0,2	3/2	I ,43 49	0,27	2000	0,5	2.10-4
3.8 Sr			4,I <u>+</u> 0,3	10 <u>+</u> 2	I,2I <u>+</u> 0,6				600	0,4	6.10-4
47 Ag			4,6 <u>+</u> 0,3	6,5 <u>+</u> 0,5	63 <u>+</u> I				31000	0,2	10-5

.

.

Продолжение таблицы І

.

16

.

ных соединениях. Приведенные численные значения этих параметров, характеризующих взаимодействия, взяты из работ 6 ,7,13/, а некоторые вычислены нами (σ_{a} (500 Å), W W_a). В табл. 1 используются следующие обозначения: b _{ког} - когерентная амплитуда рассеяния связанного ядра, $\sigma_{\text{ког}} = 4\pi b_{\text{ког}}^{2}$ и $\sigma_{\text{HK}} = 4\pi b_{\text{HK}}^{2}$ - когерентное и некогерентное сечение связанного ядра, σ_{a} (1,08 Å) - сечения поглощения для нейтронов с длиной волны 1,08 Å⁰, I - ядерный спин, μ - ядерный момент в ядерных магнетонах, Q -квадрупольный момент в единицах с · 10⁻²⁴ см², σ_{a} (500 Å) - сечение поглощения для нейтронов с длиной волны 500 Å , $W = \frac{2}{3} - \frac{\sigma_{\text{HK}}}{\sigma_{\text{ког}}^{+\sigma} \text{HK}}$ - вероятность рассеяния с перекидкой ядерного спина

и $W_{a} = \frac{2}{3} \frac{\sigma_{HK}}{\sigma_{KOT^{H}}\sigma_{HK^{H}}\sigma_{a}}$ вероятность рассеяния с перекидкой спина с учётом σ_{a} . Данные σ_{a} , W и W_{a} являются грубыми оценками.

Из рис. 2 и данных для амплитуд рассеяния (см. $^{/5,6/}$ и табл. 1) и замечаний по поводу когерентной части сечения рассеяния (раздел 2.5) следует, что σ_1^{-1} < 1 барн, если температура образца < 100⁰K. Таким образом, можно избавиться от неупругих фононных процессов.

Вклад σ ≈ 1 барн не зависит ни от энергии, ни от темпепара ратуры и поэтому дает постоянный фон.

Однако следует иметь в виду, что при достаточном количестве атомов с заселенными электронными уровнями УН могут нагреваться довольно сильно, поскольку в этом случае ^к пара надо умножать на Р́/Р, а Р́/Р может достигать величины ≈ 10² и больше (см. разд. 2.3).

Исходя из того, что пока поток УН мал, исследования магнитных материалов, которые сводятся к измерению величины внутреннего магнит-

ного поля, очень трудно провести, потому что магнитные атомы обладают $\sigma_{a} \approx 10^{3}$ барн. Сравнительно простым является исследование квадрупольных расшеплений в соединениях с маленьким σ_{a} , содержащих изотопы с ядерными спинами > 1 (D, ⁷Li).

Авторы выражают свою искреннюю благодарность Ф.Л. Шапиро, Г. Хебер, К. Эльк (оба из Технического университета в Дрездене, ГДР) за ценные замечания. Мы особенно благодарим Н.М. Плакиду за помощь при вычислениях, приведенных в разделе 2.4.

Литература

- 1. Ф.Л. Шапиро. УФН 95, 146 (1968).
- 2. Я.Б. Зельдович. ЖЭТФ 36, 1952 (1959).
- 3. В.И. Лущиков, Ю.Н. Покотиловский, А.В. Стрелков, Ф.Л. Шапиро. Препринт ОИЯИ Р3-4127, Дубна, 1968.
- 4. В.Д. Ананьев. Препринт ОИЯИ 13-4395, Дубна 1969.
- 5. И.И. Гуревич, Л.В. Тарасов. Физика нейтронов низких энергий, Наука, Москва, 1965.
- 6. К. Бекурц. Нейтронная физика, Атомиздат, Москва, 1968.
- 7. Д.Ж. Хьюдж, Р.Б. Шварц. Атлас нейтронных сечений, Атомиздат, Москва, 1959.
- 8. B. Fainford, K.C. Turberfield, G.Busch, O.Vogt, J.Phys.C. (Proc. Phys.Soc.). R.J.Birgeneau, E.Bucher, L.Passel, D.L.Price, K.C.Turberfield. Preprint BNL 14131.
- 9. В. Лоу. Парамагнитный резонанс в твердых телах. ИИЛ, Москва, 1962.
- 10. Ю.А. Изюмов, Р.П. Озеров. Магнитная нейтронография, Наука, Москва, 1966.
- 11. J.M.Cassels. Progr.Nucl.Phys., 1, 185 (1950).

- 12. М.К. Агеев, В.П. Алик, Р.М. Галис. Алгоритмы, вып. 2, Вычислительный центр АН СССР, Москва 1966.
- 13, I.Ebert, G.Seifert, Lernresonanz im Festlorper, Akademische Verlagsgesellschaft, Leipzig, 1966.

Рукопись поступила в издательский отдел 15 июня 1970 года.