

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ЛАБОРАТОРИЯ ЯДЕРНЫХ ПРОБЛЕМ ЛАБОРАТОРИЯ ВЫСОКИХ ЭНЕРГИЙ

высоких энергий

Ю.Ф.Бычков, И.Н.Гончаров, В.И.Кузьмин, М.Литомиский, И.С. Хухарева

1304

СВЕРХПРОВОДЯЩИЕ СВОЙСТВА СПЛАВОВ Nb - Zr Ю.Ф.Бычков, И.Н.Гончаров, В.И.Кузьмин, М.Литомиский, И.С.Хухарева

1304

СВЕРХПРОВОДЯЩИЕ СВОЙСТВА СПЛАВОВ Nb – Zr

Дубна 1963

В 1961 году были открыты необычные свойства интерметаллического соединения $Nb_3 S_n$: при температуре 4,2⁰K в магнитном поле 88 кэ сверхпроводимость не нарушалась при пропускании тока, плотность которого достигала 10⁵ а/см^{2/1/}. Это открыло широкие перспективы применению сверхпроводников для получения сильных магнитных полей. Впоследствии в результате интенсивных поисков подобные сверхпроводящие свойства были обнаружены у $V_3 G_a$, $V_3 S_i$, сплавов Nb_2r , Nb_7i , Mo_7Re ^{/4,7/}. Последние три сплава вполне пригодны для изготовления проволоки обычным способом.

Как известно, сверхпроводящие свойства сплава $Nb - Z_r$ зависят от целого ряда факторов $^{/2-18,29/}$, прежде всего от состава. К настоящему времени наиболее полному изучению подверглись сплавы, содержащие менее 50 ат. процентов Z_r . Установлено, что в полях до 30 кэ наибольшей критической плотностью тока обладают сплавы с малым содержанием Z_r . С другой стороны, как было показано в $^{/20/}$, критическое поле $H_k(j \rightarrow 0)$ возрастает с увеличением содержания Z_r , достигая максимума ≈ 125 кэ в области 65-75 ат процентов Z_r , после чего быстро падает.

Было установлено, что при заданном внешнем поле критическая плотность тока j_k пропорциональна степени холодной деформации металла^{/3-7}, 9,15[/]. При этом на холоднокатаных ленточках наблюдалась большая анизотропия j_k относительно угла между направлением внешнего поля j_k и плоскостью прокатки, а именно: при увеличении угла от 0[°] до 90[°] j_k падало в 5-30 раз^{/3,9/}. Предполагается, что это связано с образованием в результате деформации сплава тонких сверхпроводящих пленок, плоскости которых в основном совпадают с плоскостью прокатки.

Свойства Nb - Zr сплавов весьма существенно зависят от термообработки. В работе⁽⁶⁾ было показано, что кратковременный (15-30 мин) отжиг в вакууме проволоки из $Nb \pm 28$ % Zrпри 800°С приводил к увеличению j_k почти на порядок (внешнее поле 22 кэ). В ⁽⁹⁾ приведены кривые зависимости $j_{k||}$ и $j_{k\perp}$ (т.е. плотностей тока, когда плоскость прокатки параллельна и перпендикулярна внешнему полю) от температуры отжига образцов из Nb - 25% Zr; длительность отжига в вакууме составляла 3 часа. Измерения проводились в поле H = 23,5 кэ при $T = 4,2^{\circ}$ К. Кривые $j_{k||} = j_{\perp}$ имеют максимум в области 500-750°С. При этом почти исчезает зависимость j_k от угла между полем и плоскостью прокатки, что по мнению авторов ⁽⁹⁾, связано с существенным изменением характера образований, по которым течет сверхпроводящий ток: образования "пленочного" типа уступают место "нитевидным". В этой же работе приведена зависимость $j_{k||}$ и $j_{k\perp}$ от состава сплавов Nb - 2r, отожженных в течение 3 часов при 600-800°С. Максимальные абсолютные значения $j_k(23,5 \text{ кэ)}$ получены для образцов, содержащих 35-50% Zr.

Нужно отметить, что кривые зависимости j_k от H даже для одного состава значительно различаются в работах разных авторов. В качестве одного из лучших результатов приведем опубликованную в /10/ характеристику проволоки из Nb -25% Zr со степенью холодной деформации > 99%: при T =4,2°K - j_k (30 кэ) =1,5·10⁵ a/см², j_k (50 кэ) =8·10⁴ a/см²,

а после 60 кэ j_k резко падает, так что j_k (70 кэ)=80 а/см². При T=2,24[°]K вся кривая $j_k(H)$ сдвигается примерно на 13 кэ вправо. Все измерения были сделаны в поле, перпендикулярном току в образце.

Весьма обнадеживающим является результат, приведенный в работе^{/14/} для проволоки из сплава 25% Zr - 70% Nb -5%Ta : даже в поле 90 кэ критическая плотность тока оставалась не ниже 2·10⁴ а/см² (степень деформации 98%, без термообработки).

При рассмотрении опубликованных данных видно, что сверхпроводящие свойства сплавов даже одного состава значительно различаются вследствие сильного влияния ряда металлургических факторов: метода выплавки, содержания примесей, характера и степени деформации, термообработки и т.д. Описаны в основном сплавы Nb – Zr, близкие по составу к 25% Zr, в то время как сплавы с большим содержанием Zr, обладающие максимальными H_k, почти совершенно не исследованы.

В настоящей работе были исследованы сплавы Nb – Zr , содержащие от 0 до 80% Zr. Наибольшее внимание было уделено сплавам на основе Zr (65% Zr и выше), которые изучались как в неотожженом состоянии, так и после различного рода термических обработок.

Приготовление образцов и методика измерений

Известно, что сплавы ниобия с цирконием являются пластичными во всей области концентраций, если исходные металлы не содержат большого количества примесей, особенно газовых. Вследствие этого в качестве исходных материалов для приготовления образцов мы использовали цирконий, подвергнутый иодидной рафинировке, и ниобий, очищенный электронно-лучевой переплавкой в вакууме (< 10⁻⁴ мм рт.ст.). Слитки Nb - Zr весом 20 г выплавлялись в дуговой печи МИФИ-9-3 с нерасходуемым вольфрамовым электродом в атмосфере чистого аргона. Плавка производилась на медном, охлаждаемом водой поду. Некоторые сплавы из тех же исходных материалов выплавлялись в электронно-лучевой печи, в вакууме. Для достижения гомогенности слитки в обоих случаях переворачивелись и переплавлялись от 2 до 5 раз.

Сплавы исследовались в состоянии бета твердого раствора, которое в сплавах, содержащих менее 75% Zr , фиксировалось в литых образцах за счет быстрого охлаждения на медном поду; в случае большего содержания Zr (75% и выше) для получения бета-структуры приходилось закаливать сплавы из бета-области в воду (см. таблицу 1). Готовые слитки обтачивались до 5 мм, затем прокатывались в ленту. Часть образцов подвергалась термической обработке. Отжиг проводился в запаянных кварцевых ампулах (вакуум ≈ 10⁻²мм рт.ст), в которые вместе с образцами помещался геттер (стружка ниобия). Образцы отжигались либо в виде ленточек толщиной ≈ 1 мм, которые после отжига подвергались дополнительной холодной деформации, либо в виде тонкой фольги (толшиной 0,03-0,05 мм), не подвергавшейся последующей механической обработке.

В качестве образцов использовались узкие полоски фольги длиной 50-60 мм, шириной ≈ 0,5 мм, толшиной 0,03-0,05 мм. К концам такой юлекки приваривались точечной сваркой

пластинки из никеля, к которым припаивались токовые контакты (их сопротивление при 4,2⁰К было [₹] 10⁻⁵ом). Для осуществления потенциальных контактов в середине образца на расстоянии 20 мм друг от друга наносилась электролитическим путем две узкие полоски меди, к которым припаивались потенциальные провода.

Измерялись температура сверхпроводящего перехода T_k и критическая плотность тока j_k в полях до 28 кэ при температуре $4,2^{0}$ К. T_k определялась от температурной зависимости сопротивления образцов, которое измерялось потенциометром типа P-306 с точностью до 0,002 ом при измерительном токе $\approx 0,5$ ма. Для измерения температуры использовался угольный термометр сопротивления, изготовленный в Институте физических проблем АН СССР. Зависимость сопротивления такого термометра от температуры дается формулой:

$$lg R + (lg R)^2 = \frac{B}{T}$$
.

Коэффициент *B* определялся в точке кипения жидкого гелия $(4,2^{\circ}K)$ и в точках перехода в сверхпроводящее состояние чистого *Pb* $(7,2^{\circ}K)$ и *Nb* $(9,5^{\circ}K)$. За T_{k} принималось значение температуры, соответствующее середине сверхпроводящего перехода ($R = 0,5 R_{o}$, где R_{o} - остаточное сопротивление).

Для измерения j_k в магнитном поле использовался магнит со сверхпроводящими кольцами, аналогичный описанному в работе^{/21/}. Зазор между полюсами составлял 2,5 мм, диаметр полюсов - 3 мм. Сверхпроводящие кольца были изготовлены из сплава NbZr (рис. 1).

8 образцов вставлялись в специальную рамку так, что плоскость прокатки была параллельна, а направление тока в образце перпендикулярно магнитному полю. В этой же рамке была закреплена катушка для измерения поля. При передвижении рамки в зазор между полюсами магнита попадали либо один из образцов, либо измерительная катушка. Напряжение, возникающее на потенциальных выводах образца фиксировалось милливольтметром (до≈ 0,2 мв), ав некоторых случаях – гальванометром с чувствительностью 8.10⁻⁷ в/дел. Специальная система реле прерывала ток через образец при переходе его в нормальное состояние (при появлении ≈ 10 мв). Параллельно образцам включались шунты из медной проволоки /R (300°K) ≈ 1 ом /.

РЕЗУЛЬТАТЫ

1. Сверхпроводящие свойства неотожженных сплавов

На рис. 2 показаны результаты измерения критической плотности тока в зависимости от магнитного поля для холоднодеформированных образцов разного состава. Степень деформации указана в таблице 1. Наибольшие значения j_k в поле 28 кэ имеют сплавы, содержащие 10-30% Z_r . На эту же область концентраций приходится максимум критических температур (рис. 3). Полученные в настоящей работе значения T_k находятся в хорошем согласии с данными Халма и Блауджера^{/19/} для сплавов с 10-60 % циркония. Сходство кривых зависимости T_k и j_k от состава сплава, по-видимому, указывает на глубокую внутреннюю связь этих факторов.

Для некоторых образцов (главным образом отожженных) отмечался нерегулярный разброс *j* при постоянном *II*. На рисунках этот разброс показан вертикальными отрезками на кривых *j* (*H*).

2. Свойства сплавов 65-80% Zr , подвергнутых термообработке

На рис. 4 представлена зависимость j_k в поле 27 кэ и T_k от температуры одночасового отжига для сплава Nb -80% Zr. В случае 65% Zr эти кривые имеют такой же вид, однако максимум сдвинут в область более высоких температур (650 - 750°C). То, что в ^{/9/} не наблюдалось возрастания j_k после термообработки ленточек, содержащих 80% Zr, по-видимому, объясняется слишком высокой для этой концентрации температурой отжига.

Было проведено рентгенографическое исследование Nb - 80% 2r , отожженного при 570°С в течение 1 часа. Съемка велась на CuK_a - излучении методом отражения от поверхности. На поверхности ленты было обнаружено 3 фазы: a - 2r, исходная β -фаза с 80% 2rи небольшое количество β -фазы с 15% 2r. На глубине 0,02 мм количество a - 2r резко уменьшается, а начиная с глубины 0,05 мм, a - фаза и тем более обогащенная Nb β фаза с 15% Zr не наблюдаются вообще. Таким образом, новые фазы в данном случае образуются лишь в тонком поверхностном слое.

Для выяснения влияния фазового состава на сверхпроводящие свойства измерялась критическая плотность тока образцов после удаления с лент, отжигавшихся в течение 2 часов при 570°С поверхностных слоев разной толщины. Было установлено, что после снятия с поверхности слоя толщиной 0,1; 0,2; 0,3 мм j_k практически не меняется (во всех случаях образцы имели одну и ту же степень деформации). Из этого можно заключить, что возрастание j_k после непродолжительного отжига обусловлено изменением структуры кубического объемно-центрированного твердого раствора, т.е. началом рекристаллизации холоднодеформированного сплава, а не образованием новых равновесных фаз. Путем металлографического исследования образцов с 80% Z_r было установлено, что после одночасового отжига при 570°С образуются мелкие зародыши β -фазы, размер которых составляет = 10^{-3} мм; пссле 100-часового отжига их размер = $3 \cdot 10^{-3}$ мм. В обоих случаях текстура сохраняется. Отжиг при 800° С и 900° С приводит к полной рекристаллизации сплава, и размер зерен β -фазы в этих случаях составляет соответственно 0,02-0,05 мм и 0,1-0,2 мм.

Смещение максимума в сторону более высоких температур отжига при уменьшении содержания Z_r от 80 до 65%, по-видимому, происходит вследствие повышения температуры рекристаллизации β -твердого раствора. Возрастание j_k у Nb- 80% Z_r после отжига при 400°С, возможно, следует связывать также с субмикроскопическими выделениями метастабильной ω -фазы, образующейся по всему объему сплава и приводящей, в свою очередь, к большим искажениям решетки. Чтобы выяснить влияние ω -фазы, образцы Nb -80% Z_r отжигались при 400°С в виде тонкой фольги и после отжига дополнительно не деформировались. Как видно из рис. 5, увеличение длительности отжига привело к сильному росту j_k . Это, по-видимому, связано с образованием ω -фазы, так как после продолжительного отжига (10 и больше часов) при более высокой температуре у образцов, не подвергавшихся

дополнительной деформации, критическая плотность тока оказалась существенно ниже, чем у образцов с промежуточным отжигом. Можно предполагать, что это связано с частичным уничтожением во время отжига текстуры прокатки, тем более заметным, чем продолжительнее отжиг (ср. кривые 2,3 рис. 6 и кривые 4, 5 рис. 7).

Увеличение длительности промежуточного отжига Nb -80% Zr до 100-200 часов при 570[°]С привело к некоторому снижению критической плотности тока при одновременном существенном возрастании T_k (рис. 8).

Литература

- 1. J.E.Kunzler, E.Buchler, F.S.L.Hsu, J.H.Wernick. Phys. Rev. Lett., 6, 89 (1961).
- 2. J.E.Kunzler. Bull. Am. Phys. Soc., 6, 298 (1961).
- 3. T.G.Berlincourt, R.R.Hake, D.H.Leslie. Phys. Rev. Lett., 6, 671 (1961).
- 4. J.E.Kunzler., Rev. Mod. Phys., 33, 501 (1961).
- 5. M.A.R.LeBlanc. Phys. Rev., 124, 1423 (1961).
- 6. G.D.Kneip, J.O.Betterton, D.S.Easton, J.O.Scarbrough, J.Appl. Phys., <u>33</u>, 754 (1962).
- 7. J.E.Kunzler. J.Appl. Phys. Suppl. 33, 1042 (1962).
- 8. C.W.Berghout. Phys. Lett., 1, 292 (1962).
- 9. В.Д.Бородич, А.П.Голубь, А.К.Комбаров, М.Г.Кремлев, Н.К.Мороз, Б.Н.Самойлов, В.Я.Филькин. ЖЭТФ, <u>44</u>, 110 (1963).
- 10. P.R.Aron, H.C.Hitchcock. J. Appl. Phys., 33, 2242 (1962).
- 11. J.J.Stekly. Bull. Am. Phys. Soc., 7, 323 (1962).
- 12. C.N.Whetstone, A.D.McInturff, D.B.Sullivan, C.E.Roos. Bull. Am. Phys. Soc., 7, 323 (1962).
- 13. A.D.McInturff, C.N.Whetstone, D.B.Sullivan, C.E.Roos. Bull. Am. Phys. Soc., 7, 323 (1962).
- 14. R.M.Rose, J.Wulff. J.Appl. Phys., 33, 2394 (1962).
- Е.М.Савишкий, В.В.Барон, В.Р.Карасик, С.Ш.Ахмедов, В.Я.Пахомов, М.И.Бычкова, ПТЭ, № 1, 182 (1963).
- 16. Von. I.Dietrich, II.Pfisterer, H.Richter, R.Weyl, U.Zwicker. Z. fur Naturforschung, 18a, 93 (1963).
- 17. З.А. Куц, Н.М. Рейнов, Н.И. Кривко, Т.А.Сидорова, А.А.Фогель. ФТТ, № 5, 361(1963).
- 18. C.J.Bergeron, L.D.Roberts, R.W.Boom. Bull. Am. Phys. Soc., 7, 574 (1962).
- 19. J.K.Hulm, R.D.Blaugher. Phys. Rev., 123, 1569 (1961).
- 20. T.G.Berlincourt, R.R.Hake. Phys. Rev. Lett., 9, 293 (1962).
- 21. В.Р. Карасик, Р.ШАкчурин, С.Ш. Ахмедов. ПТЭ, № 2, 179 (1962).
- 22. R.G.Trenting, J.H.Wernick, F.S.L.Hsu. High Magnetic Fields, New York-London, p. 597 (1962).

Рукопись поступила в издательский отдел 17 мая 1963 г.

Содержание циркония, вес. %	Метод выплавки	Термическая обработка	Обжатие при холод- ной прокатке, %
0	Электронно-лучевая печь	-	99,5
10	Дуговая печь	Горячая ковка + отжиг при 1200 ⁰ , 3 ч., быстрөе ох- лаждение	98
15	Электронно- лучевая печь	-	98
26	Электронно- лучевая печь		98
38	Дуговая печь		99
50	Дуговая печь	-	99
58	Дуговая печь	-	99
64	Электронно-лучевая печь	-	98
75	Дуговая печь (плавлен из штабикового ниобия)	Закалка в воду от 900 ⁰	99
80	Дуговая печь		98

Таблица 1

Состав исследованных в состоянии β -твердого раствора Nb-Zr -сплавов, способ их приготовления, степень деформации при прокатке.

Рис. 1. Электромагнит со сверхпроводящими кольцами.

Рис. 2. - j_k(H) неотожженных образцов.

Содержание	Zr	(%,	пс весу):
1) 0 ;	4)	50;	7) 80;
2) 15;	5)	38;	8) 64;
3) 10;	6).	58;	9) 75.

Рис. 3. Зависимость j_k и T_k от концентрации Z_r .

Рис. 4. Зависимость j_k и T_k от температуры 1-часового отжига Nb - 80% Zr. Обозначения: + - j_k o - T_k

Рис. 5. Зависимость j_k(H) для Nb -80% Zr после отпуска при 400°C.

N₂	Обозначе- ние	Длительность отпуска
1		неотож. обр.
2	•	15 мин
3	ø	35 мин
4	×	40 мин в атмосфере воздуха
5		1,5 час.
6	8	10 час.

Рис. 6. Зависимость *j_k(H)* для *Nb_*75% *Zr* , отожженного при 570°С.

N⁰	Обозна-	Длительн.	Степень деф.
	чение	отжига	после отжига
1		неотож.	
2	o	200 час.	90%
	•	100 час.	91%
	Δ	10 час.	отж.фольга
3	•	10 час.	89-92,5%
	x	1 час.	89,5%
4	۵	2 час.	88-91%

,

.

Рис. 7. Зависимость *j_k(Ч)* для Nb- 80% Zr , отожженного при 570⁰С

N₂	Обозна- чение	длительн. отжига	Степень деф. после отжига
1		неотож.	
2	x	100 час.	83-86%
3	+	200 час.	84%
4	•	1 час	отжигалась фольга
5	•	1 час	83,5 %
6	0	10 час.	86 %

•

Рис. 8. Зависимость *j_k* и *T_N Nb* – 80% *Zr* от длительности отжига при 570°С. Обозначения:

•

$$\begin{array}{c} + - j_k \\ o - T_k \end{array}$$