СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

> 19/11-70 13 - 9584

В.П.Овсянников

9-76

2761

0-345

ЭЛЕКТРОННАЯ ПУШКА ИСТОЧНИКА МНОГОЗАРЯДНЫХ ИОНОВ "КРИОН-1"

ЭЛЕКТРОННАЯ ПУШКА ИСТОЧНИКА МНОГОЗАРЯДНЫХ ИОНОВ "КРИОН-1"

В.П.Овсянников

13 - 9584

Введение

Разработка криогенного электронно-лучевого источника ядер для синхрофазотрона ЛВЭ ОИЯИ потребовала в варианте "Крион-1" ^{/1,2/} создания электронно-оптической системы, формирующей аксиально-симметричный электронный пучок со следующими параметрами:

- первеанс P = $10 \div 16 \cdot 10^{-6}$ A/B^{3/2}

- ускоряющее напряжение $U_a = 2.7,5 \kappa B$,

- днаметр пучка 2r = 3 мм,

- длина пучка L = 1200 мм,

- плотность ј ~ 100 A/см,

- токооседание на структуру при токе 1 $A \sim 10^{-6} A$.

Использование электронного пучка с высокими значениями первеанса и плотности и с минимальными пульсациями обусловливает выбор системы формирования. Применение электронных пушек с электростатической компрессией и бриллюэновской системой фокусировки затруднительно из-за сложности согласования с магнитным полем сверхпроводящего соленоида и зависимости величины пульсаций от ускоряющего напряжения /3/.

Наиболее целесообразной представляется фокусирующая система, содержащая электронную пушку, не экранированиую от магнитного поля, тем более, что величина напряженности магнитного поля применяемого фокусирующего соленоида / 4/ обеспечивает необходимое превышение над соответствующим бриллюэновским.

Высокая плотность электронного пучка может быть обеспечена применением катодов с высокой плотностью тока эмиссии и возможной магнитной компрессией /5/. Применение автоэмиттеров, обладающих большой плотностью тока эмиссии, осложняется сравнительно высокой нестабильностью и трудностями при создании многоострийных систем /6,7/. Термокатоды с током эмиссии до 1ОО A/cm^2 /импрегнированные, катоды из гексаборида лантана и пр./ работают при высокой температуре, что предъявляет повышенные требования к конструкции катодно-подогревного узла /8/.

В данной работе приведены описание конструкции и результаты испытаний электронной пушки с эффективным катодно-подогревным узлом, предназначенной для формирования сильно замагниченных электронных пучков с первеансом $10 \div 13 \ m\kappa A/B^{3/2}$ и средней плотностью тока ~30 A/cm^2 .

II. Конструкция электронной пушки

Общий вид электронной пушки "Крион-1" представлен на *рис. 1*.

К массивному медному аноду /1/ через керамический кольцевой изолятор крепится катодно-подогревный узел, представляющий собой отдельный блок / puc. 2/.

Для увеличения экономичности катодно-подогревного узла применена система эмиссионного подогрева основного катода /4/, укрепленного в танталовом держателе /6/, представляющем собой цилиндр с прорезями, расположенными в два яруса /рис. 3/. Прорези каждого яруса смещены относительно друг друга на 60°. Для увеличения тепловой развязки в некоторых случаях верхний ярус разрезается дополнительно /рис. 3a/. Габаритные размеры держателя следующие:

- днаметр эмиттирующей поверхности	
катода	- 3 мм,
- толшина стенки стакана	- 0,2 мм,
- внешний диаметр стакана	- 8,4 мм,
- высота стакана	- 5 мм.

В качестве катода подогревателя / 5/ при использовании основного катода из гексаборида лантана применялась вольфрамовая спираль /puc. 36/. Держатель катода

Рис. 2. Общий вид катодно-подогревного узла.

Рис. 3. Основной катод с держателем /а,б/ и катодподогреватель /в/.

Рис. 4. Геометрические параметры промежутка катоданод.

через медную втулку /3/, регулирующую положение катода и фокусирующего электрода /2/, крепится к катодному цилиндру /9/. Держатель катода-подогревателя /7/ и катодный цилиндр собраны на опорном изоляторе /10/.

Геометрические параметры промежутка катод-анод представлены на *рис.* 4. Расстояние катод-анод "d'вэкспериментах изменялось от O,6 до O,8 мм. Действие сильной анодной линзы компенсировалось магнитным полем на катоде, превышающим соответствующее бриллюэновское в несколько раз.

Рассмотренная конструкция электронной пушки достаточно удобна при экспериментальной работе. Необходимая точность зазоров катод-анод, катод-фокусирующий электрод обеспечивается точностью изготовления соответствующих деталей, в основном точностью обработки цилиндрических поверхностей.

III. Испытательный стенд

Экспериментальная отработка электронной пушки производилась в стенде / puc. 5/, представляющем собой установку, состоящую из фокусирующего соленоида /4/ напряженностью 3 кЭ, вакуумной системы, секционированной трубки дрейфа /5/, электронного коллектора /6/ и экстрактора ионов /7/. Вакуумная система, включающая в себя форвакуумную ступень, а также ступени высоковакуумную /два последовательно соединенных диффузионных насоса с ловушкой Поста/ и сверхвысоковакуумную /электросорбционный насос ЭСН-1 /3/ и азотитный насос /2//, не отличается от рассмотренной

Рис. 5. Общий вид вакуумного стенда.

в работах /9, 10/. После откачки стенда до высокого вакуума и кратковременного прогрева заливается азот в ловушку азотитного насоса и включается ЭСН-1. Высоковакуумная ступень отсекается. В лальнейшем вакуум в системе поддерживается только насосамн сверхвысоковакуумной ступени и непрерывно улучшается от 2.10^{-8} до 5.10^{-9} Тор. После незначительного отепления азотита и откачки продуктов газовыделения электросорбционным насосом новое охлаждение азотита приводит к кратковременному улучшению вакуума до $7 \cdot 10^{-10} Top$. Контроль вакуума производился датчиком МИ-12-8, установленным над ловушкой азотита /1/. Дрейфовая трубка состоит из 7 секций, выполненных из нержавеющей стали с внутренним лиаметром 5 мм. Длина прейфовой трубки ~20 см. Медный электронный коллектор имеет вид цилиндра и охлаждается водой вне вакуумной системы. Экстрактор ионов, имеющий потенциал ниже катодного, исключает прохождение части электронов на стенки вакуумной камеры. Такая система позволяет контролировать состояние поверхности катода через смотровое стекло /8/.

В стенде испытывались электронные пушки, формирующие электронные пучки с током 2,5 A при напряжении 4 кВ. Длительность импульса ~10 мс. Рабочий вакуум в таком режиме, измеренный датчиком над азотитом, ~2.10⁻⁸ Тор. Токооседание на структуру наблюдалось только в области последней секции, что может быть объяснено спадом магнитного поля. Время непрерывной работы стенда при испытании электронной пушки на долговечность превысило 200 ч.

IV. Основные результаты

При работе электронной пушки висточнике "Крион-1" и на стенде формировались электронные пучки с первеансом 10 -13 мА/В^{3/2} и током до 2,5 А.

Некоторые характеристики электронных пучков представлены в *таблице*.

 Напряже- Первеанс, Расстояние Поле на ка- Соответств. Вы килловнов- кив, р, мкА/ВЗ/2 катоц-аноц, тоде, соое ноле В 2 II, I8 0,8 3000 800 3,75 В 3,2 II, 04 0,8 I2000 1000 I2 4 9,88 0,8 3000 1089 2,7 1,25 I3,I8 0,6 3000 700 4,5 								
2 II,I8 0,8 3000 800 3,75 3,2 II,04 0,8 I2000 I000 I2 5 4 9,88 0,8 3000 I089 2,7 58 I,25 I3,I8 0,6 3000 700 4,5	A A		Напряже- ние, кВ	Первеанс, Р, мкА/В ³ /2	Расстояние катоц-аноц, мм	Поле на ка- толе, Вк Э	Соответств. бриллюзнов- ское поле Во Э	ค็ได้
3,2 II,04 0,8 I2000 I000 I2 5 4 9,88 0,8 3000 I089 2,7 58 I,25 I3,I8 0,6 3000 700 4,5	I H		~	II,I8	0,8	3000	800	3,75
5 4 9,88 0,8 3000 1089 2,7 58 1,25 13,18 0,6 3000 700 4,5	2		3,2	11,04	0,8	I2000	1000	12
58 I,25 I3,I8 0,6 3000 700 4,5	N	ۍ ۲	4	9,88	0,8	3000	1089	2,7
	0	,58	I,25	13,18	9,0	3000	004	4,5

Катод из гексаборида лантана ($\mathcal{LZS}_{\mathcal{S}}$).

`*

Режим активации вольфрамовой нити накала при работе с катодом из гексаборида лантана не отличается от рассмотренного в работе $^{/8/}$. Время работы неактивированного катода-подогревателя из вольфрамовой проволоки ϕ O,2 мм при отборе тока в 20 мА при напряжении подогрева 400 В не превысило 40 ч.

При работе электронной пушки висточнике "Крион-1" токооседание на структуру составило величину менее 1 мкА, что неудивительно при превышении поля на катоде над соответствующим бриллюэновским более чем в 10 раз.

Таким образом, при использовании эффективных термозмиттеров можно создать удовлетворительные системы формирования высокопервеансных электронных потоков с высокой плотностью тока. Для катодов из LaB₆ первеанс электронной пушки постоянно уменьшается из-за изменения геометрии промежутка катод-анод и в среднем за 100ч работы падает с 10 мкA/B^{3/2} до 7,5÷8 мкA/B^{3/2}.

Распределение плотности электронов по радиусу пучка при принятых экстремальных параметрах промежутка катод-анод и сильной замагниченности потока отличается от равномерного и носит квазиполый характер/¹⁰/. Экспериментальные измерения не производились из-за сложности ввода зондов внутрь криогенной магнитной системы. Однако, как показано в работах ^{/11}/,для электронных потоков с магнитным сопровождением экспериментально измеренное распределение плотности по радиусу хорошо совпадает с рассчитанным на ЭВМ.

Для решення проблемы высокопервеансного электронного потока с равномерным распределением электронов по раднусу и большой длительности, как известно ^{/12/}, необходимо использовать электронную пушку с "теневой" сеткой и сеткой в аноде. Разработка такой пушки является следующим этапом развития электроннолучевых ионных источников.

Созданная электронно-оптическая система успешно применена в экспериментах по ионизации углерода, азота, аргона, ксенона/1, 2/.

10

11

В заключение автор выражает глубокую благодарность Е.Д.Донцу за руководство работой и участие в экспериментах, А.И.Пикину, В.В.Сальникову, Н.И.Чернышову за помощь в работе. Автор искренне признателен токарю ПТО ЛВЭ В.Н.Соловьеву за изготовление деталей электронной пушки.

Литература

- 1. Е.Д.Донец, В.И.Илющенко, А.И.Пикин, В.П.Овсянников. IV Всесоюзное совещание по ускорителям заряженных частиц. М., Наука, 1974.
- 2. Е. Д.Донец, А.И. Пикин. ЖТФ, том XIV, вып. 11/1975/.
- 3. И.В. Алямовский. Электронные пучки и электронные пушки. М., «Сов.радио", 1966.
- 4. В.Г.Аксенов, Е.Д.Донец, А.И.Пикин, А.Г.Зельдович, Ю.А.Шишов. ОИЯИ, Р8-8563, Дубна, 1975.
- 5. K.Amboss. Studies of a Magnetically Compressed Electron Beam, IEEE transactions on electron devices, vol. ED-16, numb. 11, 1969.
- 6. Г.Н.Фурсей, Г.К.Карцев.Стабильность АЭЭ и миграционные процессы, подготавливающие развитие вакуумной дуги. ЖТФ, Х, вып. 2 /1970/.
- 7. Г.Н.Фурсей, И.Д.Вентова и др. Исследование условий формирования эффективных сильноточных автоэмиссионных катодов на основе тугоплавких металлов. ЖТФ, Х, вып. 5 /1972/.
- 8. Е.Д.Донец, В.И.Илющенко, В.А.Альперт. ОИЯИ, P7-4469, Дубна, 1969.
- 9. Е.Д.Донец, В.И.Илющенко, В.А.Альперт. ОИЯИ, P7-4124, Дубна, 1968.
- 10. Г.П.Егоров, Я.И.Местечкин и др. Распределение плотности тока в электронных лучах. Электронная техника, серия "Электроника СВЧ", №4. Изд. ЦНИИ "Электроника", М., 1975.
- Тезисы докладов и рекомендаций научно- технических конференций, совещаний и семинаров по электронной технике. Экспериментальные методы исследования электронных пучков, серия "Электроника СВЧ", №1 /23/ Изд. ЦНИИ "Электроника", М., 1975.
- 12. Стапранс, Макьюн, Рютц. СВЧ электровакуумные приборы большой мощности с линейным электронным пучком. Proceedings of the IEEE, vol. 61, No. 3, 1973.

Рукопись поступила в издательский отдел 3 марта 1976 года.