

СООБЩЕНИЯ Объединенного института ядерных исследований

дубна

13-91-204

Л.М.Сороко, В.В.Терещенко

МЕТОД ИЗМЕРЕНИЯ УГЛА ПОГРУЖЕНИЯ ПРЯМОГО СЛЕДА ЧАСТИЦЫ В ЯДЕРНОЙ ФОТОЭМУЛЬСИИ ПРИ ПОМОЩИ МЕЗООПТИЧЕСКОГО ФУРЬЕ-МИКРОСКОПА

13-91-204

Сороко Л.М., Терещенко В.В. Метод измерения угла погружения прямого следа частицы в ядерной фотоэмульсии при помощи мезооптического фурье-микроскопа

Описан новый метод измерения угла погружения прямого следа частицы в ядерной фотоэмульсии при помощи мезооптического фурье микроскопа (МФМ). Дан анализ картины дифракции далекого поля от прямых следов частиц, идущих под углом к медианной плоскости ядерной фотоэмульсии. Рассмотрена связь между положениями двух мезооптических изображений наклонного следа частицы в пределах фокального кольца МФМ и углом погружения наклонного следа частицы. Найдено значение критического угла погружения прямого следа частицы, который характеризует каждую данную конструкцию МФМ. Описаны эксперименты, выполненные на модели МФМ, для двух типов тест-объектов. Выводы теории сопоставлены с результатами экспериментов.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1991

Перевод авторов

Soroko L.M., Tereshchenko V.V. The Technique for Measuring of the Dip Angle of the Straight Particle Tracks in the Nuclear Emulsion by Means of the Meso-Optical Fourier Transform Microscope 13-91-204

The new technique desighed to measure the dip angle of the straight particle track in the nuclear research emulsion by means of the Meso-optical Fourier Transform Microscope (MFTM) is described. The analysis of the far field diffraction picture of the straight particle track having the finite angle to the median plane of the nuclear emulsion is given. The relation between the dip angle of the particle track and the positions of its meso-optical images in the frame of the focal ring of the MFTM is treated. The extreme dip angle of the straight particle track as a distinctive feature of the MFTM's construction is found. The experiments accomplished on the MFTM's model for two kinds of the test-objects are described. The predictions of the theory are compared with the results of the experiments.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Communication of the Joint Institute for Nuclear Research, Dubna 1991

1. ВВЕДЕНИЕ

Принцип действия мезооптического фурье-микроскопа (МФМ) для ядерной фотоэмульсии описан в $^{/1-3, 13-17/}$. Каждый прямой след частицы преобразуется в МФМ в два мезооптических изображения: левое и правое. Положение двух мезооптических изображений горизонтального прямого следа частицы в пределах фокального кольца МФМ однозначно определяется расстоянием ρ_0 до оптической оси МФМ и z -координатой центра прямого следа частицы в пределах поля зрения МФМ.

Для измерения угла погружения θ_z прямого следа частицы ранее был предложен метод ^{/15/}. Для оценки угла погружения θ_z производят измерения z-координаты прямого следа частицы в нескольких соседних полях зрения МФМ, а по получении данных вычисляют θ_{π} . Недостаток этого метода состоит в том, что он связан с механическим перемещением МФМ относительно ядерной фотоэмульсии. Между тем в экспериментах^{/14, 16/} было показано, что угол погружения θ_z прямого следа частицы может быть измерен в статистическом положении МФМ относительно ядерной фотоэмульсии. Это стало возможным после того, как в МФМ был введен оптический интерфейс, при помощи которого оба мезооптических изображения прямого следа частицы формируются на одной общей матрице прибора с зарядовой связью (ПЗС). Тем самым все четыре геометрических параметра, которые характеризуют положение прямого следа частицы в пространстве (θ_{xy} , ρ_0 , z_0 , θ_z) в пределах поля зрения МФМ, измеряются при помощи МФМ без каких-либо механических перемещений объекта наблюдения относительно МФМ. Кроме того, в^{/5/} был описан метод оценки координаты конца прямого следа частицы, который заканчивается в пределах поля зрения МФМ, а в ^{/6/} был рассмотрен метод измерения радиуса кривизны слабо искривленного следа частицы.

В данной работе изложен новый метод измерения угла погружения прямого следа частицы в ядерной фотоэмульсии при помощи мезооптического фурье-микроскопа (МФМ). Дан анализ картины дифракции далекого поля для прямых следов частицы, идущих под углом к медианной плоскости ядерной фотоэмульсии. Получена зависимость между положениями двух мезооптических изображений наклонного прямого следа частицы в пределах фокального кольца МФМ и углом погружения

воъсвенечный институт перуных осследованый **EMERMOTEHA**

данного следа частицы. Показано, что для каждой конструкции МФМ существует критический угол погружения прямого следа частицы, такой, что если угол погружения прямого следа частицы превышает критический угол погружения, то мезооптические изображения такого следа частицы в МФМ вообще возникнуть не могут. Приведена связь между критическим углом погружения и апертурой мезооптического зеркала с кольцевым откликом.

На модели МФМ выполнены эксперименты для двух типов тестобъектов, имитирующих прямой след частицы в ядерной фотоэмульсии. Показано, что результаты экспериментов хорошо согласуются с предсказаниями теории в области углов погружения $|\theta_z| < 20^\circ$ для проявленной фотоэмульсии или для углов погружения $|\theta_z^\circ| < 60^\circ$ в реальной геометрии до фотохимической обработки ядерной фотоэмульсии. Если $|\theta_z| > 20^\circ$, то для оценки θ_z необходимо учитывать деформацию мезооптических изображений по мере увеличения угла погружения θ_z . Указанная деформация зависит от структуры фильтра пространственных частиц, который присутствует явно или виртуально в месте расположения мезооптического элемента с кольцевым откликом.

2. ТЕОРИЯ

Для установления функциональной связи между углом погружения прямого следа частицы и информацией на выходе МФМ рассмотрим следующую принципиальную схему МФМ (рис.1). Коллимированный пучок света 1 проходит через линзу преобразования Фурье 2 и просвечивает ядерную фотоэмульсию 3. Свет, дифрагированный на прямом следе частицы, захватывается рефракционным мезооптическим элемен-

том с кольцевым откликом 4, которыйизображен в виде плосковыпуклой линзы, из которой удален конус. Каждый элемент следа частицы в ядерной фотоэмульсии 3 превращается мезооптическим элементом с кольцевым откликом 4 в фокальную окружность 5. Если объект содержит N

Рис.1. Принципиальная схема мезооптического фурье-микроскопа (MФМ): 1 — коллимированный пучок света, 2 — линза преобразования Фурье, 3 ядерная фотоэмульсия, 4 — рефракционный мезооптический элемент с кольцевым откликом, 5 — фокальное кольцо, А и В — два следа частицы. Рис.2. Схема формирования трех фокальных окружностей от конечных и центральной точек горизонтального следа частицы. В области расположения точек пересечения трех фокальных окружностей возникают два мезооптических изображения: левое (L) и правое (R), которые лежат на линии, проходящей через оптическую ось МФМ.

элементов следа, которые лежат на общей горизонтальной прямой линии, то в пространстве изображений возникнет N фокальных окружностей ^{/4/}, имеющих ¹/⁸N(N – 1) точек пересечений ^{/6/}. Два мезооптических изображения прямого следа частицы формируются из массива точек взаимного пересечения двух и более фокальных окружностей (рис.2). В реальной конструкции МФМ ширина каждого мезооптического изображения составляет около 0,2 мкм. Мезооптические изображения лежат вблизи прямой, которая проходит через оптическую ось МФМ.

Тем же методом можно построить мезооптические изображения наклонного следа частицы (рис. 3). Так как радиус фокальной окружности, образованной отдельным элементом следа частицы, зависит от z-координаты рассматриваемого элемента следа частицы, то теперь два мезооптических изображения не лежат на прямой, идущей через оптическую ось МФМ. Если элемент следа частицы находится на расстоянии Δz от медианной плоскости ядерной фотоэмульсии, и – h/2 $\leq \Delta z < h/2$, где h — толщина ядерной фотоэмульсии, то радиус фокальной окруж-

Рис.3. Схема формирования трех фокальных окружностей и двух мезооптических изображений для наклонного следа частицы. Прямая линия, соединяющая два мезооптических изображения, не проходит через оптическую ось МФМ.

2

3

ности R(Δz) равен

 $R(\Delta z) = R_0 - tga_{1/2} \cdot \Delta z,$

где R_0 — радиус фокальной окружности для элемента следа частицы, находящегося в медианной плоскости ядерной фотоэмульсии ($\Delta z = 0$), а $a_{1/2}$ — угол между оптической осью МФМ и побочной оптической осью МФМ, которая задается прямой линией, идущей из рассматриваемого элемента следа частицы в точку на фокальной окружности.

Чтобы построить два мезооптических изображения наклонного следа частицы, рассмотрим массив фокальных окружностей для каждого элемента прямого следа с различными Δz и найдем область, где сгущаются точки взаимного пересечения полученных таким образом фокальных окружностей. Из рис.3 видно, что положение двух мезооптических изображений наклонного прямого следа частицы определяется двумя углами: углом ориентации θ_{xy} проекции наклонного следа частицы на медианную плоскость ядерной фотоэмульсии, а также "углом разворота" ϕ двух мезооптических изображений. Найдем связь между углом погружения θ_z наклонного следа частицы и углом разворота ϕ .

В пренебрежении величинами второго порядка малости относительно (Δz /H), где H — расстояние от следа частицы до мезооптического элемента с кольцевым откликом, получаем

 $\sin\phi = \mathrm{tg}\theta_{\mathrm{z}} \cdot \mathrm{tg}a_{1/2} . \tag{2}$

При этом для малых углов ϕ и θ_z имеем

 $\phi \approx \theta_{\rm z} \cdot tga_{1/2}, \qquad (3)$

где предполагается, что $tga_{1/2} < 1$.

Особенность мезооптического элемента с кольцевым откликом, независимо от того, является ли он рефракционным, дифракционным или зеркальным^{/14/}, состоит в том, что, начиная с некоторого угла погружения θ_z наклонного прямого следа частицы, мезооптические изображения круто идущего наклонного следа частицы вообще возникнуть не могут. Причина в том, что изменение радиуса фокальной окружности вдоль круто идущего наклонного следа частицы происходит настолько быстро, что система фокальных окружностей не имеет общих точек пересечения (рис.4).

Критическим углом $\theta_z^{\kappa put}$ называют такой угол θ_z , при котором фокальные окружности всех элементов следа частицы имеют только одну общую точку касания. В этом случае $\sin \phi = 1$, а из (3) получаем:

$$\theta_{z}^{KPNT.} = \operatorname{arc}[\operatorname{tg}(\operatorname{ctg} a_{1/2})] = \frac{\pi}{2} - a_{1/2}$$

θ^{KPHT} θ² Рис.4. Прямой след частицы, идущей под критическим углом $\theta_z^{\text{крнт.}}$ к медианной плоскости ядерной фотоэмульсии, когда оба мезооптических изображения прямого следа частицы сливаются в одну точку. При $\theta_z > \theta_z^{\text{крит.}}$ мезооптические изображения в МФМ возникнуть не могут.

При $\theta_z \ge \theta_z^{\kappa p \mu \tau}$. мезооптические изображения не возникают вообще. Если $\theta_z = = \theta_z^{\kappa p \mu \tau} - \epsilon$, где ϵ — мало, то два мезооптических изображения возникнут, но погрешность измерения θ_z будет достаточно большой (~1° — 5°). По мере уменьшения угла θ_z погрешность измерений θ_z будет уменьшаться, пока не достигнет значения $\Delta \theta_z \approx 5'$ для $\theta_x \sim 1^\circ$.

В работах ^{/7-9/} была исследована дифракция света на узкой щели, которая наблюдается при помощи оптики с наклонной апертурой. Было показано, что амплитуда поля дифракции далекого поля определяется выражением ^{/8/}:

$$u(\mathbf{x}, \mathbf{y}) = C_0 \cdot 4 \operatorname{ab} \cdot \cos \theta_z \cdot \operatorname{sinc} (\operatorname{kap}) \cdot \operatorname{sinc} (\operatorname{kb} \cos \theta_z) \times \\ \times [q \cos \theta_z - \sin \theta_z \cdot (1 - \sqrt{1 - (p^2 + q^2)}],$$
(5)

где 2а — ширина узкой щели, 2 b — длина узкой щели, ориентированной вдоль оси у, k — волновое число, р и q — безразмерные пространственные частоты

$$=\frac{x}{r_0}, \quad q = \frac{y}{r_0},$$
 (6)

г₀ — расстояние от начала системы координат в предметной плоскости до точки (х, у), а C₀ — константа. Из уравнения (5) следует, что уравнение кривой максимальной интенсивности имеет вид

$$q \cos \theta_z - \sin \theta_z \cdot (1 - \sqrt{1 - (p^2 + q^2)}) = 0.$$
 (7)

Справедливость формулы (7) была доказана в ^{/9/}. Однако в наших экспериментах повсюду использовались сходящийся пучок света, и поэтому результаты расчетов в ^{/9/}, где использовалось разложение по плоским волнам, не могут дать адекватного описания наших экспериментов.

5

4

(4)

p

(1)

3. ЭКСПЕРИМЕНТ

Всего было выполнено два независимых эксперимента. Схема первого из них, в котором наблюдалась картина дифракции далекого поля от наклонного прямолинейного объекта, дана на рис.5. Пучок света от гелий-неонового лазера 1 проходил через линзу преобразования Фурье 2 с фокусным расстоянием f = 300 мм и просвечивал тестобъект 3, расположенный на расстоянием 25 мм перед матовым стеклом 5. Формируемый на матовом стекле 5 фурье-образ тест-объекта 3 фотографировался при помощи объектива 6 ("Гелиос 44") на фотопленке 7 ("Микрат 300"). Тест-объект вращался вокруг оси на угол θ_{π} при помощи системы 4.

Были использованы два типа тест-объектов. Первый из них имел вид тонкой почерненной крестовины с шириной штриха 15 мкм на стекле толщиной 2 мм. При этом штрихи находились на той стороне стекла, которая была обращена в сторону матового стекла 5. Второй тест-объект имел вид "воздушной крестовины из вольфрамовых проволочек диаметром 20 мкм. Концы проволочек крепились на стеклянной пластине с вырезом на оптической оси.

На рис.ба показан фурье-образ перекрестия на стеклянной пластинке для угла погружения $\theta_z = 0$, а на рис.66 — для $\theta_z = -45^\circ$. Видно, что для $\theta_z \neq 0$ дифракционная картина содержит не только фраунгоферовскую, но и френелевскую компоненту. Последняя, как известно, содержит информацию о дальности до объекта. Видно также, что информация о величине и знаке угла погружения θ_z содержится в кривизне и знаке кривизны фурье-образа прямолинейного объекта, просвечиваемого сходящимся пучком света. Это явление наблюдалось ранее в ^{/8/}, но для относительно более широкой щели и для сравнительно малых углов θ_z , чем в описываемых экспериментах. Так, например, на рис. 6в показана картина дифракции света на тест-объекте для $\theta_z = -80^\circ$. Это — дуга на стадии, предшествующей превращению ее в замкнутую кривую.

Рис.5. Схема эксперимента для наблюдения дифракции далекого поля от наклонного тест-объекта, имитирующего прямой след частицы в ядерной фотоэмульсии: 1 — гелий-неоновый лазер, 2 — линза преобразования Фурье, 3 тест-объект, 4 — система поворота тестобъекта вокруг оси, которая идет пер-

пендикулярно оптической оси системы и пересекает последнюю в точке, где находится центр тест-объекта, 5 — матовое стекло, 6 — объектив, 7/— фотопленка.

"你们的这是不是你的你们自己是就是这一个事?"

Рис.6. Вид картины дифракции далекого поля от тест-объекта (см. текст).

Однако продвинуться в область углов $\theta_z \approx 90^\circ$ нам не удалось из-за того, что в стеклянной пластинке первого тест-объекта возникает нежелательное отражение света, а во втором тест-объекте при больших углах θ_z края выреза в стеклянной пластинке попадают в прямой пучок света.

Схема второго эксперимента показана на рис.7. Сходящийся пучок света, формируемый линзой преобразования Фурье 2, просвечивал тест-объект 3, за которым на расстоянии 25 мм располагался киноформ с кольцевым откликом 5 ^{/12, 13/}. Мезооптические изображения тестобъекта формировались на матовом стекле 5 на расстоянии 75 мм за киноформом 4. При помощи объектива 6 мезооптические изображения

7

Рис.7. Схема эксперимента для получения двух мезооптических изображений тест-объекта: 1 — источник коллимированного пучка света, 2 — линза преобразования Фурье, 3 — тест-объект, 4 — киноформ с кольцевым откликом, 5 — матовое стекло, 6 — объектив, 7 — фотопленка, 8 — система поворота тестобъекта.

фотографировались на фотопленке 7. Тест-объект 3 поворачивался на угол θ_z при помощи системы поворота тест-объекта 8. Прямой пучок света поглощался черной бумагой, диск из которой крепился к стеклу киноформа 4.

На рис.8а показаны мезооптические изображения "воздушного" тест-объекта для $\theta_z = 0$ на фоне размытой картины дифракции далекого поля от того же тест-объекта, на которую не воздействовал киноформ с кольцевым откликом 4. Дифракционная эффективность киноформа 4 была меньше 100%. На рис.86,в показаны взаимное расположение двух мезооптических изображений тест-объекта для угла + θ_z и $-\theta_z$ соответственно. Видно, что угол разворота ϕ и его знак полностью определяют угол погружения θ_z и его знак.

Результаты сопоставления теории и эксперимента представлены на рис.9, где показаны результаты измерений для тест-объекта из вольфрамовой проволоки. По оси абсцисс отложен $tg\theta_z$, а по оси ординат $\sin \phi$. Расчеты по формуле (2) показаны в виде прямой линии. Соответствие между теорией и экспериментом прослеживается вплоть до $|\theta_z| \sim -20^\circ$. При $|\theta_z| > 20^\circ$ линейная зависимость между $tg\theta_z$ и $\sin \phi$ пропадает и функция выходит на своеобразное насыщение. Причина этого эффекта в том, что положение центра тяжести мезооптического изображения не является однозначным при больших углах погружения θ_z и зависит от структуры фильтра пространственных частот, который явно или виртуально воздействует на фурье-образ тест-объекта в месте расположения мезооптического элемента с кольцевым откликом. В частности, необходимо в явном виде учитывать размеры диска из черной бумаги, который перекрывает прямой пучок света в месте расположения киноформа с кольцевым откликом.

В области малых углов погружения θ_z измерения угла ϕ были затруднены тем, что апертурный угол киноформа с кольцевым откликом был мал ($a_{1/2} = 13^{\circ}13'$), и величина угла ϕ была соизмерима с погрешностью измерений.

На рис.10 показаны результаты эксперимента для тест-объекта на стеклянной подложке. Расчетная кривая соответствует соотношению

$$\sin\phi = \operatorname{tg} \alpha_{1/2} \cdot \operatorname{tg}(\theta_z \cdot \frac{n-1}{n}), \qquad (8)$$

справедливому для малых углов погружения θ_{π} .

Рис. 11. Мезооптические изображения следов ускоренных ядер неона, полученные в эксперименте, схема которого дана на рис.12.

Рис.12. Схема эксперимента по наблюдению мезооптических изображений следов ускоренных ядер неона: 1 — линэа преобразования Фурье, 2 — ядерная фотоэмульсия, 3 — киноформ с кольцевым откликом, 4 — фотопленка.

зооптические изображения следов релятивистских ядер неона, которые были исследованы ранее /16,17/. Схема эксперимента показана на рис.12. Сходящийся пучок света, формируемый линзой преобразования Фурье 1, просвечивал ядерную фотоэмульсию 2 со следами быстрых ядер неона, которые шли параллельно друг другу. Мезооптические изображения этих следов частиц фотографировались поочередно, сначала левое, а потом правое, на фотопленке 4. В работе /16/ подробно описан алгоритм измерения угла погружения θ_{π} в МФМ и метод калибровки соотношения вида (2) или (8). Преимущество системы /16/ состояло в том, что при помощи оптического интерфейса оба мезооптических изображения формировались на одной матрице ПЗС. При этом мезооптическое зеркало с кольцевым откликом в МФМ создавало мезооптическую глубину резкости ~ 0,3 мм. Благодаря этому в одном статическом положении удавалось сделать оценку угла погружения θ_z с погрешностью ~ 5 (угловых минут). Подобным свойством не обладал киноформ с кольцевым откликом, используемый в данной работе. Указанная чувствительность киноформа с кольцевым откликом к юстировке по глубине создавала дополнительный источник погрешностей измерений. Следует также заметить, что для повышения точности измерения угла погружения θ_z необходимо увеличить апертурный угол а1/2 и соответственно tga1/2 в выражении (1). Однако это при-

Наконец, на рис.11 показаны ме-

ведет к уменьшению диапазона измеряемых углов погружения $\theta_z^{\text{крит}} = \pi/2 - a_{1/2}$ (4).

Измеренный угол погружения следа частицы в ядерной фотоэмульсии θ_z не является истинным углом наклона следа частицы к медианной плоскости ядерной фотоэмульсии, так как толщина ядерной фотоэмульсии в процессе фотохимической обработки уменьшается в три раза. Поэтому линейное соотношение вида (2) или (8) фактически выполняется вплоть до истинных углов погружения $|\theta_{\sigma}| \leq 60^{\circ}$.

4. ЗАКЛЮЧЕНИЕ

1. Предложен и экспериментально опробован новый метод измерения угла погружения прямого следа частицы в ядерной фотоэмульсии при помощи мезооптического фурье-микроскопа (МФМ). На основе анализа дифракции далекого поля наклонного прямого следа частицы и свойств МФМ образовывать два мезооптических изображения для каждого прямого следа частицы дана теория предложенного метода. Получена связь между взаимным расположением двух мезооптических изображений наклонного следа частицы и углом погружения этого следа частицы.

2. Показано, что для данной конструкции МФМ существует критический угол погружения прямого следа частицы. Если след частицы имеет наклон, который превышает критический угол погружения, то мезооптические изображения такого следа частицы не могут возникнуть в МФМ.

3. Описаны эксперименты на модели МФМ для тест-объектов двух типов. Дано сопоставление предсказаний теории с результатами эксперимента.

4. С учетом эффекта сжатия ядерной фотоэмульсии по толщине в результате фотохимической обработки можно сделать вывод о том, что в реальной конструкции МФМ с мезооптическим зеркалом можно измерять истинный угол погружения траектории частицы относительно медианной плоскости ядерной фотоэмульсии вплоть до ±60°.

ЛИТЕРАТУРА

1. Сороко Л.М. - ОИЯИ, Б1-13-81-229, Дубна, 1981.

- 2. Астахов А.Я. и др. Сообщение ОИЯИ Р13-85-378, Дубна, 1985.
- 3. Бенце Д., Сороко Л.М. Сообщение ОИЯИ Р13-86-659, Дубна, 1986.
- 4. Бенце Д., Сороко Л.М. Сообщение ОИЯИ Р13-85-137, Дубна, 1985.

- 5. Сороко Л.М. Сообщение ОИЯИ Р13-87-169, Дубна, 1987.
- 6. Сороко Л.М. Сообщение ОИЯИ Р13-87-358, Дубна, 1987.
- 7. Salvatore G. Eur.J.Phys., 1984, 2, p.158.
- 8. Patorski K. Optica Acta, 1983, v.30, No. 5, p.673.
- 9. Rabal H.J. et al. Optica Acta, 1985, v.32, No. 11, p.1309.
- 10. Бенце Д. и др. Сообщение ОИЯИ Р13-86-240, Дубна, 1986.
- 11. Коронкевич В.П. и др. Автометрия, 1985, № 1, с.4.
- 12. Koronkevich V.P. et al. Optik, 1984, v.67, No. 3, p.257.
- 13. Бенце Д. и др. Сообщение ОИЯИ Р13-86-630, Дубна, 1986.
- 14. Astakhov A.Ya. et al. JINR Preprint E13-88-892, Dubna, 1988.
- Soroko L.M. Axicons and mesooptical Inaging Devices. In: Progress in Optics, ed. E.Wolf, Elsevier, 1989, v. 27, p.136.
- 16. Astakhov A.Ya. et al. Nucl. Instr. and Meth., 1989, A283, p.13.
- 17. Астахов А.Я. и др. Препринт ОИЯИ Д13-89-450, Дубна, 1989.

Рукопись поступила в издательский отдел 7 мая 1991 года.