СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ДУБНА

13 - 9036

29/1x-75

......

3761/2-75

32 - 191

ДИСКОВЫЙ СВЕРХПРОВОДЯЩИЙ СОЛЕНОИД С НЕПРЕРЫВНОЙ ОБМОТКОЙ

13 - 9036

В.А.Васильев, Ю.А.Шишов

ДИСКОВЫЙ СВЕРХПРОВОДЯЩИЙ СОЛЕНОИД С НЕПРЕРЫВНОЙ ОБМОТКОЙ

1. ВВЕДЕНИЕ

В сверхпроводящих обмотках контактные соединения проводников между собой, в том числе и паяные, являются нежелательными, так как усложняют конструкцию, понижают ее надежность и создают некоторое омическое сопротивление. При сплошной намотке проводника контактов обычно немного. Однако в ряде случаев ленточные проводники свивают в плоские спирали /диски/, между которыми до сих пор не удавалось обходиться без паяных соединений.

В электротехнике применяется технология изготовления трансформаторов с непрерывной обмоткой, уложенной в диски^{/1/}, однако количество витков в таких дисках невелико. В дисках сверхпроводящих соленоидов содержатся десятки и сотни витков, и известная технология осуществления переходов проводника с диска на диск здесь неприемлема.

В криогенном отделе ЛВЭ ОИЯИ разработана и использована для изготовления лабораторного сверхпроводящего соленоида технология навивки дисковых обмоток из ленточного проводника без контактных соединений между дисками. Ниже приводятся данные о параметрах и результатах испытания соленоида и сведения о технологии его намотки.

2. КОНСТРУКЦИЯ СОЛЕНОИДА

Соленонд состонт из двух секций с независимым электрическим питанием.

Рис. 1. Двухсекционный соленоид со щелью. 1 - наружная секция; 2 - внутренняя секция; 3 - полюса из пермендюра; 4 - фланец; 5 - фланец; 6 - стяжные шпильки.

Внешняя секция / рис. 1/, содержит 18 дисков 1 различного наружного днаметра, образующих бочкообразную форму обмотки, которая позволяет максимально использовать объем криостата днаметром ЗОО мм. Соленоид размещается в криостате таким образом, что его ось перпендикулярна оси криостата. При таком положении соленоида через центральную щель сечением 12 х 45 мм² вводится шток с исследуемыми объектами, например, короткими образцами сверхпроводника. Щель образована двумя текстолитовыми сегментами. Диски внешней секции навиты на опориую трубку днаметром 102 мм, изолированную слоем текстолита толщиной 1 мм. В качестве межвитковой изоляции применена фторопластовая лента шириной 5 мм и толщиной О,3 мм. Сечение ленты, из которой навиты диски, равно 1 х 7,5 мм². Диски изолированы друг от друга текстолитовыми проставками 7 толщиной 1 мм с радиальными пазами для прохода жидкого гелия. Диски удерживаются от осевого смещения на трубе фланцами толщиной 3 мм. Таким образом, диски внешней секции имеют собственный каркас из трубы и фланцев. Подобная автономность внешней секции позволяет использовать ее внутреннее отверстие для испытания катушек с наружным диаметром до 100 мм.

Для изготовления непрерывной дисковой обмотки была использована лента с ниобий-циркониевыми проволоками. Лента состоит из 10 сверхпроводящих и 8 медных проволок, покрытых с обеих сторон слоем гальванической меди.

Внутренняя секция 2 соленонда собрана из двух илиндрических катушек, навитых проводом с ниобийпитановыми жилами. Провод изолирован двумя слоями лавсановой нити. Наружный диаметр провода с изоляцией составляет 0,65 мм. Каркасы катушек - латунные. Между споями в обмотках проложена изоляция из двух слоев лавсановой пленки толщиной 0,02 мм. Обе катушки покрыты бандажом из проволоки из стали X18H10T диаметром 1 мм. В отверстие внутренней секции вставлены полюса 3 из пермендюра диаметром 38 мм. Зазор между полюсами - 12 мм.

Полюса прикреплены латунными фланцами 4 к фланцам 5 из стали X18H10T. Секции подсоединены с помощью фланцев 5 и шпилек 6.

3. РЕЗУЛЬТАТЫ ИСПЫТАНИЙ СОЛЕНОИДА

Критический ток внешней секции, равный 700±5 A, определился полным переходом соленоида в нормальное состояние. Переход был резким и неуправляемым, что свидетельствует о неполной стабилизации сверхпроводника нормальным металлом при этом токе.

Катушки внетренней секции, соединенные последовательно, запитывались током от выпрямителя ВУ 12/600. Контроль за полем осуществлялся датчиком Холла с точностью +4 · 10⁴ A/м.

Техническая характеристика соленонда представлена в **м**абл. 1.

Таблица 🕺 I

Параметры соленонда со щелью.

₩₩ 1711	: Наименование характеристики	: Внешняя : секция : : :	Внутренняя секция
Ι.	Внутренний дивметр обмотки, мм	105	45
2.	Наружный диаметр, мм	переменный, макс.270	9 5
з.	Длина соленоида, мм	165	175
4.	Ширина центральной щели, мы	12	15
5.	Число дисков	18	-
6.	Размеры сечения проводника	7,5xI mm ²	Ø 0,5 MM
7.	Длина проводника, м	720	1800
8.	М _е териал сверхпроводника	нио бий- 50% циркония	ниобий - -50%титана
9.	Диаметр сверхпроводника, мм	0,25	0,07
10.	М _а териалы проводника	IO проеолок + медь (I:I4)	19 жил +медъ (I:3)
II.	Критический ток, А	700	54 (в поле внещ. секции 2,44(СА/м)
12.	Плотность критического тока в обмотке, А/м.кв.	64 40⁷	1,540 8
13.	Собственное критическое поле секции, А/м	2,8.106	1,35·10 ⁶
14.	Суммарное критическое поле (две секции +полюса), А/М	4,8-10 ⁶	
I5.	Запасенная энергия соленоида, кЛж	24	

4. ТЕХНОЛОГИЯ НАМОТКИ

На рис. 2 показано приспособление для непрерывной намотки дискового соленоида, укрепленное на токарном станке. На вал 1 устанавливается каркас соленоида 2, планшайба 3 и питающая катушка 4 со стопорным винтом 5. Намотку первой пары дисков ведут обычным порядком^{/2/}. Начиная от внутренних витков, навивают первый диск, затем, изменив направление вращения вала 1, навивают второй диск. При намотке нечетных дисков всех последующих пар, с целью осуществления плавного внешнего перехода между четными и нечетными дисками, используется планшайба 3.

Рис. 2. Приспособление для намотки наружной секции соленоида. 1 - ведущий вал; 2 - каркас соленоида; 3 планшайба; 4 - питающая катушка; 5 - стопорный винт; 6,7 - ленточный сверхпроводник.

Намотку нечетных дисков осуществляют по следующей схеме:

1. Ленту 6 сматывают с питающей катушки 4 в количестве, необходимом для данного диска. Эту часть ленты располагают у станка.

выводы

2. На опорное кольцо планшайбы укладывают первый внутренний виток и далее часть ленты 7 через косой паз в планшайбе выводят к питающей катушке.

3. Вращением планшайбы навивают весь диск на опорное кольцо планшайбы. Питающая катушка 4 закреплена винтом 5 и вращается вместе с планшайбой.

4. Готовый диск сдвигают с опорного кольца планшайбы. Ослабление витков на каркасе компенсируют подтяжкой участка ленты 7.

Первоначально технология намотки отработана на ленте шириной 11,5 *мм*. Изготовлена катушка, техническая характеристика которой представлена в *maбл. 2*. После завершения внешней секции они были испытаны вместе.

Таблица 2

Парамстры опытного соленоида.

ни п/п : Наименование характеристики	
I. Внутренний диаметр, мм	44
2. Наружный диаметр, мм	98
З. Длина обмотки, мм	I 68
4. Ширина центральной щели, мм	IB
5. Число дисков	12
6. Сечение ленты, мм ²	II,5 x I
7. М _а териал сверхпроводника и норм. металла	ниобий – -50% циркония
8. Количество сверхпроводящих проволок в ленте	20
9. Критический ток в ленте, А	01610
10. Собственное поле в центре, А/м	1910 ⁶
II. Число витков в соленоиде	266
12. Полная длина ленты, м	051

1. Предложен способ навивки дисковых обмоток сверхпроводящих соленондов, позволяющий обойтись без контактных соединений между дисками.

2. Разработаны технология и устройство для осуществления способа.

3. Изготовлен по предложенному способу и успешно испытан лабораторный сверхпроводящий соленоид на 6 *Т*. Показано, что бесконтактные дисковые обмотки просты в изготовлении и надежны в эксплуатации, а проводник может быть повторно использован для изготовления соленоидов с другими параметрами.

Литература

- 1. Л.С.Герасимов и др. Обмотки и изоляция силовых масляных трансформаторов. Трансформаторы. вып. 19, М., Энергия, 1969.
- 2 A.D.Appleton et al. "Some Design Aspects of Large Superconducting Magnet" Proc. Intern. Conf. Magnet. Techn., Oxford (1967). pp. 553-559.

Рукопись поступила в издательский отдел 3 июля 1975 года.