

ССОБЩЕНИЯ Объединенного института ядерных исследований дубна

K 143

13-87-571

Н.Ю.Казаринов, А.С.Щеулин

ТРЕБОВАНИЯ К СТАБИЛЬНОСТИ ПАРАМЕТРОВ ПУЧКА ЭЛЕКТРОНОВ

И СИСТЕМЫ ИНЖЕКЦИИ АДГЕЗАТОРА КУТИ-20

Для проведения экспериментов по ускорению ионов необходимо формировать электронно-ионные кольца со стабильными от импульса к импульсу характеристиками. В качестве критерия стабильности естественно взять основной параметр, характеризующий качество формируемых колец, - электрическое поле, создаваемое электронной компонентой на краю сгустка:

$$\mathbf{E} = \frac{2 \,\mathrm{eN}_{\mathrm{e}}}{\pi \,\mathrm{R} \,(\mathbf{a}_{\mathrm{x}} + \mathbf{a}_{\mathrm{z}})} \,. \tag{11}$$

Для эффективной работы ускорителя необходимо поддерживать его с точностью не хуже единиц процентов. Суммарная погрешность электрического поля определяется следующим образом:

$$\frac{\Delta E}{E} = \sqrt{\left(\frac{\Delta N_e}{N_e}\right)^2 + \left(\frac{\Delta R}{R}\right)^2 + \left(\frac{\Delta a_x}{a_x + a_z}\right)^2 + \left(\frac{\Delta a_z}{a_x + a_z}\right)^2} \cdot \left(\frac{\Delta a_z}{a_x + a_z}\right)^2 \cdot \frac{1}{2}$$

Отсюда видно, что если мы хотим иметь $\frac{\Delta E}{E} \leq \pm 10\%$, то каждый из параметров, входящих в /1/, необходимо стабилизировать с точностью не хуже $\pm 5\%$. При этом определяющей будет стабиль-ность числа электронов в кольце, зависящая в свою очередь от характеристик систем формирования кольца на радиусе захвата и условий сжатия. Эксперименты показывают /1/, что выбором n-траектории можно уменьшить потери частиц при сжатии практически до нуля. Поэтому в первом приближении стабильность числа электронов в кольце в основном зависит от параметров инжектора – линейного индукционного ускорителя и системы захвата пучка на равновесную орбиту.

Число электронов в кольце определяется условиями инжекции и параметрами входящего пучка. Оценки стабильности $\frac{\Delta N_e}{N_e}$ проведем при следующих предположениях:

1. Аксиальный аксептанс камеры адгезатора значительно больше эмиттанса пучка.

2. Радиальный аксептанс заполняется полностью, а плотность частиц на соответствующей фазовой плотности постоянна.

© Объединенный институт ядерных исследований Дубна, 1987 1

3. Влияние кулоновских поправок к частотам бетатронных колебаний на стабильность числа электронов несущественно, что при радиусе равновесной орбиты адгезатора КУТИ-20 $^{/2/}$ R_o =35 см и полуразмерах сечения пучка $a_{\rm x,z}$ = 2÷3 см заведомо выполняется при $\bar{\gamma}_{\rm o}$ \gtrsim 5 / $\bar{\gamma}_{\rm o}$ - среднее значение лоренц-фактора частиц пучка/.

4. Инжекция близка к согласованной, т.е. колебания огибающей при номинальных значениях параметров отсутствуют.

При согласованной инжекции квадраты среднеквадратичной площади, занимаемой частицами на фазовой плоскости, S_n^2 и аксептанса адгезатора S_A^2 определяются следующим образом $^{/2/}$:

$$S_{n}^{2} = \pi^{2} \left(\frac{\psi_{c}^{2}}{\beta_{c}} \left(\overline{\epsilon^{2}} \right)^{\frac{1}{2}} \left(\overline{\frac{\Delta p}{p}} \right)^{2} + \overline{\epsilon^{2}} \right), \qquad (3)$$

$$S_{A}^{2} = \pi^{2} a^{2} \left(a^{2} - \psi_{c}^{2} \left(\frac{\Delta p}{p}\right)^{2}\right) \frac{1}{\beta_{c}^{2}} .$$
 (4/

Здесь $\psi_c = \frac{R_o}{\nu_x^2}$, $\beta_c = \frac{R_o}{\nu_x}$ - согласованные значения дисперсионной и бетатронной функции соответственно; $(\epsilon^2)^{\frac{1}{2}}$ - среднеквадратичный эмиттанс пучка; $((\frac{\Delta p}{p})^2)^{\frac{1}{2}}$ - среднеквадратичный импульсный разброс; ν_x - частота радиальных бетатронных колебаний; $a = \frac{1}{2} (R_{\Gamma p} - R_o)$; $R_{\Gamma p}$ - максимально возможный радиус частиц в пучке /определяется устройствами инжекции/. Выражение /4/, в частности, определяет допустимый импульсный разброс в'пучке /S_A^2 ≥ 0 /.

Основными факторами, влияющими на стабильность числа захваченных электронов, являются, во-первых, изменение аксептанса, обусловленное нестабильностью средней энергии электронов m с $^2\gamma_0$ и тока J_o в катушках, формирующих магнитное поле на радиусе инжекции. Для нескоррелированных ошибок $\Delta\gamma_0$ и Δ J_o при выполнении условия $\psi_c^2 (\frac{\Delta p}{p})^2 << a^2$ получим

$$\sqrt{\left(\frac{\Delta N_{e}}{N_{e}}\right)^{2}} = \left(\left(\frac{\Delta \overline{y_{o}}}{\overline{y_{o}}}\right)^{2} + \left(\frac{\Delta J_{o}}{J_{o}}\right)^{2}\right)^{\frac{1}{2}} \frac{aR_{o}}{a^{2} - \psi_{c}^{2}\left(\frac{\Delta p}{p}\right)^{2}}; \qquad \frac{15}{2}$$

во-вторых, случайный радиальный когерентный угол $\mathbf{x}'_{\text{ког}}$, возникающий в основном из-за нестабильности фазы колебаний центра масс пучка в ускорителе-инжекторе $^{/3,5/}$. Если эмиттанс инжектируемого пучка \mathbf{S}_n совпадает с аксептансом адгезатора \mathbf{S}_A , то имеем

$$\sqrt{\left(\frac{\Delta N_{e}}{N_{e}}\right)^{2}} = \sqrt{\frac{1}{x_{HOF}^{2}}} / x_{max}, \qquad /6/$$

где $x'_{max} = \left(\frac{\beta_c^2}{a^2 - \psi_c^2 (\overline{\Delta p/p})^2}\right)^{-\frac{1}{2}}$ максимальный угловой разброс, усваиваемый аксептансом.

Оценим среднеквадратичные амплитуды флуктуаций средней энергии электронов $\overline{\gamma_0}$ и когерентного угла $\overline{x'_{cor}^2}$ для ускорителя-инжектора СИЛУНД-20 ^{/4/}.

Относительный разброс средней энергии электронов определяется следующим образом:

$$\left(\frac{\Delta \overline{\gamma_{0}}}{\overline{\gamma_{0}}}\right)^{2} = \left(\frac{\Delta U}{U}\right)^{2} + k^{2}\left(\frac{\Delta J_{e}}{J_{e}}\right)^{2}, \qquad /7/$$

где U - суммарное напряжение генераторов, создающих электрическое поле; J_e - ток ускоряемого пучка; $\mathbf{k} = \frac{J_e}{U}\eta$; η - тангенс угла наклона нагрузочной характеристики индукционного ускорителя /7/ . В рассматриваемом случае значение коэффициента k для тока пучка 500 A и с учетом нагрузки ускоряющей системой составляет ~ 0,4.

Одной из причин появления когерентного угла на выходе инжектора является нарушение азимутальной симметрии ведущего магнитного поля ускорителя, связанное, например, с несоосностью катушек, создающих магнитное поле. Для среднеквадратичного смещения осей, равного 0,5 мм, среднеквадратичный угол на выходе ускорителя *а* достигает величины 20 мрад ^{/3/}. Нестабильность магнитного и электрического полей в тракте инжектора приводит к неопределенности набега фазы вращения центра масс пучка и, в конечном итоге, к флуктуации величины когерентного радиального угла $x'_{ост}$, которая не может быть устранена системой коррекции:

$$\overline{\mathbf{x}_{\text{OCT}}^{\prime 2}} = a^2 \phi^2 \left(\left(\frac{\Delta B_z}{B_z} \right)^2 + \left(\frac{\overline{\Delta \overline{y_0}}}{\overline{y_0}} \right)^2 \right), \qquad /8/$$

где B_z – индукция ведущего магнитного поля и ϕ – набег фазы прецессии центра масс пучка по тракту ускорителя, определяемые соотношением:

$$\phi = \frac{B_z}{E_z} \ln \frac{\overline{\gamma_o} + \sqrt{\overline{\gamma_o}^2 - 1}}{\overline{\gamma_{inj}} + \sqrt{\overline{\gamma_{inj}} - 1}}.$$
 (9/

Здесь ${\rm E}_z$ - напряженность ускоряющего электрического поля, $\bar{\gamma}_{inj}$ - средний лоренц-фактор при инжекции в СИЛУНД-20.

С учетом нестабильности тока $J_{\rm u}$ петли инфлектора, компенсирующего магнитное поле адгезатора в тракте инжекции, получим следующую оценку на величину разброса когерентного угла $x'_{\rm kor}$:

$$\overline{\mathbf{x}_{KOF}^{2}} = \overline{\mathbf{x}_{OCT}^{2}} + \frac{\ell^{2}}{\mathbf{R}_{NHW}^{2}} \left(\frac{\Delta \mathbf{J}_{u}}{\mathbf{J}_{u}} \right)^{2}, \qquad /10/$$

где ℓ - длина инфлектора, $R_{\rm инж}$ - радиус точки инжекции в адгезатор.

Оценим влияние рассмотренных факторов на стабильность числа электронов в кольце. Параметры системы инжекции соответствуют адгезатору КУТИ-20: R _{инж} = 40 см; R₀ = 35 см; a = = 1,25 см; ℓ = 30 см; ν_x = 0,9; $((\frac{\Delta p}{p})^2)^{\frac{1}{2}} = 1,5\cdot10^{-2}$. Вычисления по формулам /5÷10/ дают

$$\sqrt{\left(\frac{\overline{\Delta N_e}\right)^2}{N_e}} = 40\left[\left(\frac{\overline{\Delta J_o}}{J_o}\right)^2 + \left(\frac{\overline{\Delta U}}{U}\right)^2 + k^2\left(\frac{\overline{\Delta J_e}}{J_e}\right)^2 + 0.4\left(\frac{\overline{\Delta B_z}}{B_z}\right)^2 + 0.006\left(\frac{\overline{\Delta J_u}}{J_u}\right)^2\right]^{\frac{1}{2}}.$$

В настоящее время уровень стабилизации систем питания КУТИ-20^{/4,6/} позволяет получить величины среднеквадратичных отклонений амплитудных значений:

$$\left[\left(\frac{\Delta U}{U}\right)^{*2}\right]^{\frac{1}{2}} = \left[\left(\frac{\Delta J_{u}}{J_{u}}\right)^{2}\right]^{\frac{1}{2}} = \left[\left(\frac{\Delta B_{z}}{B_{z}}\right)^{2}\right]^{\frac{1}{2}} \approx 10^{-3}.$$

Стабильность тока источника электронов ускорителя СИЛУНД-20 в зависимости от частоты повторений импульсов находится в пределах /1,5÷3/·10^{-2/4/}, что согласно /11/ приводит к нестабильности числа электронов в кольце N_e на уровне $30 \div 50\%$.

Для уменьшения разброса N_e до желаемого уровня /5÷10%/ необходимо обеспечить:

$$\left[\left(\frac{\Delta J_{0}}{J_{0}}\right)^{2}\right]^{\frac{1}{2}} = k \left[\left(\frac{\Delta J_{e}}{J_{e}}\right)^{2}\right]^{\frac{1}{2}} = 10^{-3}.$$
 /12/

Влияние флуктуаций тока пучка можно ослабить уменьшением величины коэффициента k с помощью повышения мощности генераторов, запитывающих ускоряющую структуру, при сохранении темпа ускорения пучка. Кроме того, допуски на отклонения всех параметров от номинальных значений смягчаются пропорционально уменьшению эмиттанса пучка, формируемого ускорителем-инжектором.

ЛИТЕРАТУРА

a

- 1. Саранцев В.П., Перельштейн Э.А. Коллективное ускорение ионов электронными кольцами. М.: Атомиздат, 1979.
- 2. Казаринов Н.Ю., Щеулин А.С. ОИЯИ, Р9-83-920, Дубна, 1983.
- 3. Казаринов Н.Ю., Казача В.И. ОИЯИ, Р9-87-24, Дубна, 1987.
- 4. Долбилов Г.В. и др. ОИЯИ, Р9-86-290, Дубна, 1986.
- 5. Долбилов Г.В. и др. ОИЯИ, Р9-83-307, Дубна, 1983.
- 6. Долбилов Г.В. и др. ОИЯИ, Р9-85-424, Дубна, 1985.
- 7. Горинов Б.Г. и др. ОИЯИ, 9-12148, Дубна, 1979.

Рукопись поступила в издательский отдел 21 июля 1987 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЯ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги, если они не были заказаны ранее.		
Д7-83-644	Труды Мездународной школы-семинара по физике тяжелых ионов. Алушта, 1983.	6 р.55 к.
Д2,13-83-689	Труды рабочего совещания по проблемам излучения и детектирования гравитационных волн. Дубна, 1983.	2 р.00 к.
Д13-84 -6 3	Труды XI Международного симпозиума по ядерной электронике. Братислава, Чехословакия, 1983.	4 р.50 к.
Д2-84-366	Труды 7 Международного совещания по проблемам квантовой теории поля. Алушта, 1984.	4 р.30 к.
Д1,2-84-599	Труды VII Международного семинара по проб- лемам физики высоких энергий. Дубна, 1984.	5 р.50 к.
Д10, 11-84-818	Труды V Международного совещания по проб- лемам математического моделирования,про- граммированию и математическим методам решения физических задач. Дубна, 1983.	3 р.50 к.
Д17-84-850	Труды III Международного симпозиума по избранным проблемам статнстической механики. Дубна,1984./2 тома/	7 р.75 к.
Д11-85-791 _.	Труды Международного совещания по аналити- ческим вычислениям на ЭВМ и их применению в теоретической физике. Дубна, 1985.	4 p.00 ĸ.
Д13-85-793	Труды XII Международного симпозиума по ядерной электронике. Дубна, 1985.	4 р.80 к.
Д4-85-851	Труды Международной школы по структуре ядра. Алушта, 1985.	3 р.75 к.
Q3,4,17-86-747	Труды V Международной школы по нейтронной физике. Алушта, 1986.	4 р.50 к.
	Труды IX Всесоюзного совещания по ускори- телям заряженных частиц. Дубна, 1984. /2 тома/	13 р.50 к.
Д1,2-86-668	Труды VIII Международного семинара по проблемам физики высоких энергий. Дубна,1986. /2 тома/	7 р.35 к.
Д9-87-105	Труды X Всесоюзного совещання по ускорн- телям заряженных частиц. Дубна, 1986. /2 тома/	13 р.45 к.
Д7 -87-68	Труды Международной школы-семинара по физике тяжелых ионов.Дубна, 1986	7 р.10 к.
Д2-87-123	Труды Совещания "Ренормгруппа-86". Дубна, 1986	4 р.45 к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79. Издательский отдел Объедивенного института ядерных исследований.

13-87-571 Казаринов Н.Ю., Щеулин А.С. Требования к стабильности параметров пучка электронов и системы инжекции адгезатора КУТИ-20 Рассмотрено влияние флуктуаций амплитудных значений параметров различных систем коллективного ускорителя на стабильность числа электронов в кольце Ne на радиусе равновесной орбиты после инжекции. Показано, что для поддержания величины (ΔNe/Ne) на уровне 5·10² требуется, чтобы разбросы значений электрического и магнитного полей в ускорителе-инжекторе, магнитного поля на радиусе кольца и произведения флуктуации тока пучка на коэффициент связи К между пучком и ускоряющей структурой ускорителя-инжектора не превышали 10⁻³. Снижение эмиттанса пучка и коэффициента К оспабляет требования к стабильности параметров системы. Работа выполнена в Отпеле новых методов ускорения ОИЯИ. Сообщение Объединенного института ядерных исследований. Дубна 1987 Kazarinov N.Yu., Shcheulin A.S. 13-87-571 Requirements on the Constancy of Electron Beam and KUTI-20 Adgezator Injection System Parameters The influence of amplitude value fluctuations of the collective ring accelerator system parameters on the constancy of electron ring number in the Ne ring on the radius of equilibrium orbit is considered. It is shown that for supporting (ANe/Ne) value on the 5.10^{.2} level it is necessary that variations of the electric and guide magnetic

Communication of the Joint Institute for Nuclear Research. Dubna 1987

of New Acceleration Methods, JINR.

field in the injector, the magnetic fields at the electron ring radius and the product of the electron beam current fluctuation into coupling coefficient K between electron beam and acceleration structure should be not more than 10⁻³. The beam emittance and K coefficient decreasing reduces requirements on the constancy of system parameters. The investigation has been performed at the Department