

L 101

13-87-566

1987

Н.Л.Городишенин*, В.А.Евдокимов*, С.С.Катушенок*, Ю.Ф.Киселев, А.Н.Черников

АВТОКОМПЕНСАЦИОННЫЙ ИЗМЕРИТЕЛЬ СВЕРХНИЗКИХ ТЕМПЕРАТУР

Направлено в журнал "Cryogenics"

*Белорусский государственный университет им. В.И.Ленина, Минск

Введение

В работе описан помехоустойчивый автокомпенсационный прибор для измерения сверхнизких температур угольными или полупроводниковыми терморезисторами. Характерный теплоподвод к терморезистору при таких измерениях по порядку должен составлять $/1/Q \simeq T^3$ нВт·К⁻³, т.е. 10^{-15} Вт при температуре IO мК. Опыт нашей работы показывает, что измерение столь слабых сигналов является сложной проблемой и требует введения в схему прибора дополнительных элементов подавления внутренних и внешних электрических наводок, которые отсутствуют в аналогичных известных нам промышленных приборах. В нашем приборе действие помех ослабляется благодаря симметричному подключению терморезистора к входам малошумящего предусилителя, эффективному цифровому синхронному детектору и другим схемным решениям, повышающим точность измерений в реальных условиях работы криогенного оборудования.

Принцип действия прибора

Блок-схема прибора приведена на рис. І. Терморезистор R_x питается от парафазного генератора через аттенюатор и пару резисторов $R_1 = R_2 = 10^7$ Ом. Сигнал с терморезистора через предварительный усилитель, другой аттенюатор и нормирующий усилитель поступает на один из трех суммирующих входов цифрового синхронного детектора. Последний состоит из однополярного АШП, двух одинаковых делителей на n_1 частоты, 20-разрядного реверсивного счетчика, I2-разрядного регистра памяти и I2-разрядного ЦАП перемножающего типа. Опорным напряжением этого ЦАП является напряжение N_0 в форме прямоугольного меандра с частотой 4000/2ⁿ, где ($2 \le n \le 8$) – целое число.

Выходное напряжение ЦАП (V_c) той же частоты суммируется с противофазным ему напряжением (V_{α}) с выхода нормирующего усилителя и с постоянным напряжением смещения (V_{α}) однополярного АЦП в середину его динамического диапазона. Напряжения V_{α} и V_c равны

 $V_{\alpha} = I_{x} \cdot \mathcal{R}_{x} \cdot \kappa / \kappa_{1}$, $V_{c} = -\mathcal{V}_{c} \cdot n_{x} / n_{o}$, (I) где I_{x} – амплитуда тока, протекающего через \mathcal{R}_{x} , К – произведение коэффициентов усиления предусилителя и нормирующего усилителя, K_{I} – коэффициент ослабления аттенистора, n_{x} – код на выходе регистра

Объскования виститут вачина исследования БИБЛИ:СТЕНА

Рис. І. Блок-схема автокомпенсационного измерителя сверхнизких температур.

намяти, $n_o = 2^{12}$ для 12-разрядного ЦАП. Смещение V_d подбирается так, чтобы при $V_a = -V_c$ за каждый цикл преобразования, который длится 250 мкс, АЦП вырабатывал 2^7 импульсов. В течение положительного полупериода напряжения на \mathcal{R}_x число-импульсная последовательность с выхода АЦП поступает через делитель частоты на суммирующий вход реверсивного счетчика, при отрицательном – на вычитающий вход. Если $V_a = -V_c$, то число импульсов, поступающих по каждому входу счетчика, равно и код \mathcal{R}_x не изменяется, что соответствует стационарному показанию прибора. Когда $V_a \neq -V_c$, код изменяется до тех пор, пока не выполнится условие $V_{\alpha} = -V_c$. Каждые 0,5 с схема управления осуществляет передачу кода в регистр памяти. Такая схема синхронного детектора позволяет исключить влияние инфранизкочастотных дрейфов постоянной составляющей, которые возникают в усилителе с большими разделительными конденсаторами, и кроме того, неограниченно изменять постоянную времени путем переключения коэффициента деления частоты \mathcal{N}_4 . Тот же код \mathcal{N}_x управляет пифровой динамической индикацией и вторым 10-разрядным ЦАП (с постоянным опорным напряжением) для формирования аналогового эквивалента выходного сигнала. Динамическое уравнение для АЩП с двойным интегрированием можно записать в виде /3/

$$\frac{n_{t+T}}{n_o} = \frac{n_t}{n_o} + \int_t^{t} \left((I_x R_x + e_w(t)) \frac{\kappa}{v_o \cdot \kappa_1} - \frac{n_t}{n_o} \right) dt, \qquad (2)$$

где h_t , n_{t+T} – код на выходе регистра намяти в текущий момент времени и через цикл опроса Т соответственно, $e_{\mu}(t)$ – шум предусилителя, приведенный к его входу. Постоянная времени синхронного детектора

$$\mathcal{T} = \frac{f n_o n_f}{f n_o}, \tag{3}$$

где Е – опорное напряжение АЩ, n_{f} – коэффициент деления частоты, f – тактовая частота АЩ. В результате интегрирования (2) получается

$$\frac{n_{t+T}}{n_o} = \frac{n_{t+T}}{n_o} + \frac{T}{\tau} \left[\left(\frac{R_x}{R_{x max}} - \frac{n_{t+T}}{n_o} \right) + \frac{\widetilde{e}_{\mu\nu}}{I_x R_{x max}} \right], \quad \widetilde{e}_{\mu\nu} = \frac{1}{\tau} \int e_{\mu\nu}(t) dt, \quad (4)$$

Ещ - напряжение шума, усредненное за цикл опроса Т, *R_{xmax} = t^o_o K₁ / I_x: К -*граничное сопротивление поддиапазона. Интеграл в уравнении (2)

пропорционален разности, на которую изменится код «4 через цикл опроса. Если использовать аналоговый синхронный детектор и аналоговый перемножитель в цепи отрицательной обратной связи, то под аналогичным интегралом стояла он разность с текущим, а не предыдущим значением интегрируемой функции. При одинаковом \mathcal{T} это различие приводит к более быстрому достижению стационарного значения в случае цифрового синхронного детектора. Для сравнения на рис. 2 представлены решения

Рис. 2. Динамические характеристики цифрового и аналогового синхронных детекторов при $\mathcal{X} = 0,5, 3$ и I0 с.

3

уравнения (2) вместе с решением для аналогового синхронного детектора ($\mathcal{T} = 0,5,3$ и IO с). В частности, при $T = \mathcal{T} = 0,5$ с цифровой детектор достигает стационарного состояния скачком всего лишь за один цикл опроса.

Весь диапазон измеряемых сопротивлений разбит на четыре поддиапазона с максимальным значением $\hat{k}_{x max}$ измеряемого сопротивления, равным 0,2, 2,0, 20,0, 200,0 кОм. Так как амплитуда напряжения на выходе ЦАП при $n_x = n_o$ равна $V_c = v_o = -V_{\alpha}$, $\mathcal{I}_x = v_o/k_2 R_{s,c}$, то для каждого $\mathcal{R}_{x max}$ должно выполняться условие (см. формулу (I))

$$\frac{R_{x \, max}}{R_{1,2}} \cdot \frac{K}{K_1 \cdot K_2} = 1 , \qquad (5)$$

где $K_2 - \kappa os \phi \phi \mu \mu$ инент ослабления аттенюатора (см. рис. I). В нашей схеме $R_4 = R_2 = 10^7$ Ом, $K_{15}K_2 = 4 \cdot 10^3$ в поддиапазоне $R_{x max} = 2 \, 10^5$ Ом, следовательно, $K = 2 \cdot 10^5$. Из (4) следует, что К и произведение $K_1 \cdot K_2$ для неизменного $R_{4,2}$ являются двумя эталонными параметрами схемы, определяющими систематическую погрешность измерения. Произведение $K_1 \cdot K_2$ изменяется в 10 раз при каждом переключении поддиапазона. Если при этом K_2 изменяется в 10 раз, то характерный теплоподвод $Q_{max} = I_x^{-2} \cdot R_{x max}$ перестает зависеть от положения переключателя поддиапазона $R_{x max}$ и может быть установлен другим переключателем "максимальной мощности" теплоподвода, равным 10⁻¹¹, 10⁻¹², 10⁻¹³, 10⁻¹⁴ Вт. Полезно также ввести дополнительный подпиалазон 10⁻⁶ ÷ 10⁻⁷ Вт.

При такой мощности перегретый терморезистор становится чрезвычайно чувствительным к уровню гелия в камере испарения или к положению границы расслоения He³ в He⁴ в камере растворения. В данном режиме прибор можно использовать для подбора количества и состава смеси изотопов гелия при оптимизации режима работы рефрижератора растворения.

Для оценки погрешности измерения примем в качестве среднеквадратичного отклонения случайной величины $\widetilde{\mathcal{C}}_{\mu\nu}$ (T) спектральную плотность шумов $\mathcal{C}_{\mu\nu}(\omega)$ в В·Гц^{-1/2}, усредненную по числу \mathcal{N} периодов парафазного генератора (рис. I), за цикл опроса T = 0,5 с. Тогда с надежностью 0,997 отклонение показаний цифрового индикатора от истинного значения $\mathcal{R}_{x} / \mathcal{R}_{x} \max$ не превзойдет величины

$$\left|\frac{\overline{n}}{R_{o}} - \frac{R_{x}}{R_{x}}\right| \leq \frac{3 \cdot e_{\omega}(\omega)}{\sqrt{\hat{q}_{max}} \cdot R_{x}} \qquad (6)$$

В действительности необходимо было бы учесть также влияние постоянной времени на оценку (6). Однако практически наиболее удобное значение Т/С-только 0,5:I, а реальное влияние Т/С еще меньше из-за очевидной корреляции (см. уравнение (2)) между измерениями в соседних циклах опроса. Подчеркнем принципиальные отличия нашего прибора от устройства из работы ⁷²⁷. Главное отличие в том, что цепь отрицательной обратной связи выполняет операцию перемножения (12-разрядный ЦАП, рис. I), а не операцию деления ⁷²⁷. В результате схема становится совместимой с простым и эффективным методом подавления синфазных помех, путем симметричного подключения терморезистора, вследствие чего реальная точность измерения приближается к теоретической оценке (6). Так как при каждом переключении поддиапазона (с возрастанием $\mathcal{R}_{x\,max}$) в $10^{1/2}$ раза уменьшается общий коэффициент усиления усилителя, то с понижением температуры влияние входных щумов также уменьшается (см. формулу (6)). Как уже отмечалось выше, большое преимущество прибору дают улучшенные динамические характеристики цифрового синхронного детектора.

С практической точки зрения выделение предусилителя из цепи обратной связи позволяет вынести его на криостат и гальванически развязать от остальной части прибора. Такое решение, в частности, позволило автору работи ^{/4/} осуществить надежное измерение температуры до I2 мК в условиях больших помех экспериментального зала ускорителя. Разумеется, что все перечисленные преимущества возникают ценой введения дополнительного эталонного параметра, а именно: коэффициента усиления предусилителя, что не представляет существенных проблем для современной схемотехники.

Экспериментальные результаты

На рис. З представлена схема входного усилителя. Парафазные сигналы с терморезистора R_{\star} усиливаются двумя одинаковыми малошумящими усилителями VTI (VT2), VT3 (VT4), VT5 (VT6) и затем вычитаются в дифференциальных усилителях AI и A2. В свою очередь противофазные сигналы с выходов AI и A2 повторно вычитаются в дифференциальном усилителе A3. При таком двойном вычитании происходит эффективное подавление как синфазных наводок на входы усилителя, так и помех, поступающих по шинам питания. Коэффициент усиления усилителя 2.10⁴, коэффициент подавления синфазных помех IIO дБ.

На рис. 4 представлены графики относительной погрешности измерения сопротивлений 0,15, 1,5, 15 и 150 кОм, измеренные при комнатной температуре на частотах 4000/2ⁿ (3 ≤ n ≤ 8) с постоянной времени $\mathcal{T} = I$ с. Пунктиром обозначена систематическая погрешность, возникаищая из-за частотной зависимости коэффициента усиления предусилителя (рис. I) и равная нулю на рабочей частоте 31 Гц. Статистическая погрешность определяется из рис. 4 по отклонению от пунктирной кривой.

4

5

Рис. 4. Зависимость систематической погрешности измерения (пунктирная кривая) от частоти. Статистическая погрешность определяется по отклонению от пунктирной кривой. Графики сняти при комнатной температуре, сопротивления даны в кОм, теплоподвод 7.10⁻¹⁵ Вт. На частотах 16 и 31 Гп. где отсутствуют гармоники напряжения сетевой частоти, погрешность следует формуле (6). Так, используя измеренное значение e_{μ} (ЗІ Гц) = 20 нВ Гц^{-1/2} при $Q = 7 \cdot 10^{-15}$ Вт, N = 16, $R_{x max} = 0.2$ кОм, получаем 1.5%. На более высоких частотах, несмотря на снижение спектральной плотности щума f^{-1} и увеличение N. погрешность возрастает. С помощью спектра-анализатора шума было установлено, что в подпианазонах 0,2 и 2 кОм действует паразитная помеха в виде третьей гармоники сетевой частоты, а в подпианазонах 20, 200 кОм - паразитная наводка на частоте 62 Гц. Обе наводки возникают внутри прибора, а их уровень значительно превышает спектральную плотность джонсоновского шума, хотя визуально на осщиллографе в общих шумах широкополосного усилителя эти помехи невидны. Изменение характера щума при переключении поддианазонов приводит к изменению знака статистической погрешности (см. рис. 4). Рис. 4 наглядно показывает, что минимальная статистическая погрешность достигается на частоте. равной половине частоты питающей сети, из-за отсутствия здесь сетевых гармоник и их эффективного подевления синхронным детектором на кратных частотах. Этот общепринятый способ ослабления помех 72,4/ оказывается недостаточно эффективным при измерениях с теплоподводом менее 10⁻¹³ Br.

Практически измерения проводились термометром *Speer*-220 на частоте ЗІ Гц при температуре до 23 мК. При этой температуре $\mathcal{R}_{\chi} = 50$ кОм измеряется с теплопроводом 2,5·10⁻¹⁵ Вт с погрешностью <u>+</u>0,5%, что соответствует температурной погрешности <u>+</u>0,2%. В целом прибор весьма надежен и практичен в работе.

В заключение авторы приносят благодарность профессорам В.Г.Барышевскому, Ю.М.Казаринову за поддержку этой разработки.

Литература

- I. О.В.Лоунасмаа. Принципы и методы получения температур ниже I К. М.: Мир, 1977, с.258.
- 2. R.P.Giffard. Journ.of Phys.E. Scient.Instr., 1973, v. 6, 719.
- 3. У.Титце, К.Шенк. Полупроводниковая схемотехника . М.: Мир, 1982, с.462.
- 4. А.Б.Неганов. Сообщение ОИЯИ, 8-85-291, Дубна, 1985.

Рукопись поступила в издательский отдел 20 июля 1987 года.

6

7

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

	ДЗ,4-82-704	Труды IV Международной школы по нейтрон- ной физике. Дубна, 1982.	5	p.00	к.
	Д7-83-644	Труды Международной школы-семинара по физике тяжелых ионов. Алушта, 1983.	6	p.55	к.
	Д2,13-83-689	Труды рабочего совещания по проблемам излучения и детектирования гравитационных волн. Дубна, 1983.	2	p.00	к.
	Д13-84-63	Труды XI Международного симпозиума по ядерной электронике. Братислава, Чехословакия, 1983.	4	p.50	к.
	Д2-84-366	Труды 7 Международного совещания по проблемам квантовой теории поля. Алушта, 1984.	4	p.30	к.
	Д1,2-84-599	Труды VII Международного семинара по проб- лемам физики высоких энергий. Дубна, 1984.	5	p.50	к.
	Д10,11-84-818	Труды V Международного совещания по проб- лемам математического моделирования,про- граммированию и математическим методам решения физических задач. Дубна, 1983.	3	p.50	к.
	Д17-64-650	Труды III Международного симпозиума по избранным проблемам статистической механики. Дубна,1984./2 тома/	7	p.75	к.
	Д11-85-791	Труды Международного совещания по аналити- ческим вычислениям на ЭВМ и их применению в теоретической физике. Дубна, 1985.	4	p.00	к.
	Д13-85-793	Труды XII Международного симпозиума по ядерной злектронике. Дубна, 1985.	4	p.80	к.
	Д4-85-851	Труды Международной школы по структуре ядра. Алушта, 1985.	3	p.75	к.
Д	3,4,17-86-747	Труды V Международной школы по нейтронной физике. Алушта, 1986.	4	p.50	к.
		Труды IX Всесоюзного совещания по ускори- телям заряженных частиц. Лубна, 1984. /2 тома/	13	p.50	к.
	Д1,2-86-668	Труды VIII Международного семинара по проблемам физики высоких знергий. Дубна,1986. /2 тома/	7	p.35	к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79. Издательский отдел Объединенного института ядерных исследований. Городишенин Н.Л. и др. Автокомпенсационный измеритель сверхнизких температур

Описан помехоустойчивый измеритель сверхнизких температур с симметричным подключением терморезистора к малошумящему предусилителю на входе и с бездрейфовым цифровым фазовым детектором на выходе. Цепь отрицательной обратной связи содержит перемножитель аналогового сигнала и цифрового кода. Установлено, что в реальных условиях криогенных измерений такой принцип построения схемы позволяет значительно снизить погрешность измерения. В диапазоне сопротивлений 0,02÷200 кОм действующий макет прибора обеспечивает погрешность ±0,7% при теплоподводе менее 5.10⁻¹⁴ Вт.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1987

Перевод авторов.

Gorodishenin N.L. et al.	13-87-566
Autocompensating Device for Ultralow	
Temperatures Measurements	

A noise-protected meter for ultralow temperatures with a thermoresistor symmetrically connected to a low-noise preamplifier at the input and with a driftless digital lock-in detector at the output is described. The negative feedback circuit includes a multiplier pf the analogue signal and the digital code. This principle of circuit construction is found to allow a considerable reduction of experimental errors under actual cryogenic conditions. The resistance range being 0.02-200 k Ω , the operating model of the device provides +0.5% accuracy at hear supply below 5 · 10⁻¹⁴ W.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.