

13-86-350

В.Д.Аксиненко, Е.А.Дементьев, Н.И.Каминский, А.Т.Матюшин, В.Т.Матюшин

ИМПУЛЬСНЫЙ ТРАНСФОРМАТОР ВМЕСТО ЗАРЯДНОЙ ИНДУКТИВНОСТИ В ВЫСОКОВОЛЬТНЫХ ГЕНЕРАТОРАХ

Направлено в журнал "Приборы и техника эксперимента"

1986

В работе /I/ описан генератор для питания двухметровой стримерной камеры, в котором двойная формирующая линия (ДФЛ) заряжается через индуктивность от генератора импульсных напряжений (ГИН) на основе промышленной батарем конденсаторов ГИН-500-0.02/5. Недостатком такого заряда линии является несогласованный режим ее работы вследствие разных значений емкости ГИН "в ударе" (~4 нФ) и емкости ДФЛ (~ 0,6 нФ). Значительная часть запасенной энергии остается и рассеивается в ГИНе, сныжая долговечность его составных элементов.

При избиточном значении емкости ГИН "в ударе" представляется заманчивым заменить индуктивность, через которую осуществляется заряд линии, на импульсный трансформатор (ИТ) без сердечника по схеме, предложенной в /2/. Анализ этой схемы, произведенный в /3/ без учета потерь в разрядниках и колебательных контурах, показал, что при этом можно обеспечить полную передачу энергии в нагрузку и повысить напряжение заряда линии, поэтому несомненный интерес представляет проверка ее работоспособности в практической конструкции генератора с выходным напряжением ~ 500 кВ.

Принцип действия заключается в следующем ( рис. Ia). В исходном



Рис. І.Принципиальная (а) и эквивалентная (б) электрические схемы генератора.



состоянии накопительные емкости иятиступенного IИН C. и одна накопительная емкость ИТ Ст через зарядные резисторы R3. R. и индуктивности L. заряжены до напряжения + Uo , а вторая накопительная емкость ИТ Ст через резистор R. и те же индуктивности L. - до напряжения -И, от двухполярного источника постоянного напряжения (можно исполезовать однополярный ИСТОЧНИК И ОДНУ НАКОПИТЕЛЬную емкость ИТ). При срабатывания разрядников Р M P<sub>T</sub> OMROCTA C<sub>0</sub> M C<sub>T</sub> pasряжаются через импульсний трансформатор с индуктив-HOCTAME OGNOTOR LI IL 2 I взаимной индуктивностью М

на емкость нагрузки  $C_{\rm H}$  ( емкость ДФЛ), где выделяется импульс напряжения, максимальная амплитуда которого зависит от соотношений элементов схемы и отношения напряжений  $m = \frac{U_0'}{U_1'}$ , где  $U_o' = 5 U_o^{-1}$ выходное напряжение ГИН,  $U_1' = U_1 + U_0 = 2 U_0$  ( при  $U_0 = U_1$ ) - первичное напряжение ИТ.

Анализ переходного процесса в эквивалентной схеме ( рис. Id) рассмотрен в /3/. Здесь приводятся некоторые результаты, представляющие практический интерес при выборе параметров генератора.

Изменение напряжения на емкости нагрузки  $\mathcal{U}_{H}$  в зависимости от времени t без учета затуханий в контурах трансформатора и при встречном включении  $\mathcal{U}_{o}'$  и  $\mathcal{U}_{d}'$ , как показано на рис. Іб, при одновременном замыкании ключей  $K_{o}, K_{T}$  будет следующим:

$$\begin{aligned} & \mathcal{U}_{H}(t) = m \, \mathcal{U}_{1}' \frac{g}{g+1} \left[ 1 + 0.5(q-1)\cos\omega_{1}t - 0.5(q+1)\cos\omega_{2}t \right], \\ \text{FIRe} \quad & \mathcal{Q} = \sqrt{4 + C_{3}/m^{2}C_{2}}, \quad C_{2} = C_{0} \, C_{H} / (C_{0} + C_{H}), \quad g = C_{0} / C_{H}, \\ & \tilde{\omega}_{3} = \sqrt{A(J+X)}, \quad \tilde{\omega}_{2} = \sqrt{A(J-X)}, \quad X = \sqrt{1 - B/A^{2}}, \\ & B = \frac{1}{[L_{1}C_{1}L_{2}C_{2}(1-K^{2})], \quad A = \left[(J+2Kn+n^{2})C_{2} + C_{1}\right] / \left[2C_{1}C_{2}L_{2}(1-K^{2})\right], \\ & K = M / \sqrt{L_{1}L_{2}}, \quad n = \sqrt{L_{2}/L_{1}}. \end{aligned}$$

Напряжение  $U_{\rm M}$  (t) является суперпозицией двух колебаний с частотами  $i\partial_4$  и  $i\partial_2$ , и максимальное зарядное напряжение ДФЛ при  $i\partial_4/i\partial_2 = 2$ (т.е. при X=0,6) получается на втором полупериоде и составляет .  $U_{\rm NM} = m U_1' \ \vartheta^{(\gamma+1)}(q+1)$ .

Эффективность энергопередачя  $\eta = [g(q+1)^2]/[(g+1)(q^2+g)]$ будет максимальной ( $\eta = I$ ) при условии g = q. В этом случае  $\mathcal{U}_{\rm HM} = m q \mathcal{U}_1' = q \mathcal{U}_0'$  (т.е. можно повнсить зарядное напряжение линии в q раз по сравнению с выходным напряжением IUH), а время заряда линии до максимума равно  $t_3 = \pi \sqrt{46L_1C_1q}/(q-2,5)$  и сравнимо с  $t_3$  в схеме обнчного ИТ. Однако, в отличие от ИТ, здесь получается меньшее значение отношения максимума первой полуволны напряжения к максимуму второй при реальных значениях q, оно равно  $\delta \mathcal{U}_{\rm HM} = \frac{\mathcal{U}_{\rm HM1}}{\mathcal{U}_{\rm HM2}} = (3q-5)^2/[16(q^2-1)].$ 

Кроме того, в отличие от ИТ, в котором коэффициент электромагнитной связи К=0,6 при соотношении частот  $\mathcal{W}_1/\mathcal{W}_2 = 2$ , в данной схеме при таком же соотношении частот этот коэффициент зависит от значений q к m:

$$K = \frac{[Xm(q^2-1)/(q-X)]-1}{n} , n = \sqrt{\frac{(q^2-1)(m^2q-2mX+m^2X)}{(q-X)}+1},$$

т.е. при малых значениях q и m значение К < 0,6 (например, при m =I и  $q \simeq 1,67$  значение К=0).

При согласном включении зарядных напряжений  $\mathcal{U}_{o}'$  и  $\mathcal{U}_{1}'$ , т.е. при изменении полярности  $\mathcal{U}_{c}'$  или  $\mathcal{U}_{1}'$ , в схеме не обеспечивается полная передача запасенной энергии в линию, однако время заряда линии до максимума при этом уменьшается в  $2\sqrt{(q^{+X})/(q^{-X})}$  раз.

Вноор основных элементов осуществлялся исходя из следующих соображений. Для импульсного заряда ДФЛ с емкостью  $C_{\mu} \simeq 0.6$  нФ накопительной емкостью С₀ =4 нФ ( рис. 16) является емкость "в ударе" генератора на основе ГИН-500-0.02/5, описанного в работе /1/. При этом **g** = Co/C<sub>n</sub> ~ 6,7. С целью уменьшения требуемых значений K, n и C1=m2q.(q-1) Сн используется двуполярный источник зарядного напряжения, при этом выбрано значение m =2,5. Из имеющихся в наличии высоковольтных малоиндуктивных конденсаторов в качестве накопительной емкости С, выбраны, из-за ограничений по месту, два конденсатора типа ИМ-70-0, IУЗ. Хотя в этом случае и не происходит полной передачи запасенной энергии в линию (измеренное значение Ст=45 нФ вместо требуемого С<sub>I</sub>=140 нФ, т.е.  $q \simeq 3.8 < g$ ), расчетная эффективность энергопередачи достаточно высока,  $\eta \simeq 0.94$ . При резонансном заряде, т.е. при Х=0,6, требуется ИТ с параметрами п = I0,2 и К=0,52. Для уменьшения влияния "паразитной" индуктивности первичного контура, равной ~ 0,4 мкГн (0,3 мкГн - индуктивность двух конденсаторов ИМ-70-0, ІУЗ и 0, І мкГн - индуктивность разрядника ИТ и подводящих проводников), и уменьшения потерь напряжения в первичном контуре ИТ изготовлен трансформатор с  $L_1 = 3$  мкГн,  $L_2 = 440$  мкГн и M=17,5 мкГн, т.е. эффективные значения параметров ИТ составили  $n_{s\phi} \simeq II,4$  и К<sub>рф.</sub>  $\simeq 0,45$ . В этом случае  $\bar{\mathcal{W}_2}/\mathcal{W}_2 \simeq I,9$  (X=0,56), расчетные потери зарядного напряжения линии и энергии из-за меньшего, чем требуется, значения К составляют ~ 2% и ~ 4% соответственно.

С целью экспериментальной проверки преимуществ и недостатков предложенной схеми был изготовлен простой импульсный трансформатор, способный выдержать в период испитаний реальные напряжения. Он был установлен вместо индуктивности в генераторе, описанном в /1/.Конструкция этой части генератора с трансформатором дана на рис. 2. Первичная обмотка ИТ (9)- три витка медного тросика ф 6 мм - расположена в форме спирали Архимеда в один слой, вторичная обмотка (10)- 42 витка в два слоя, выполненных кабелем типа РК-75-9-15 без экранирующей оплетки. Между обмотками расположен изолятор (11) из оргстекла. Для более равномерного распределения напряжения по виткам вторичной обмотки установлено разрезное охранное кольцо (13) из медной трубки диаметром 20 мм. В качестве разрядника ГИН и ИТ использовался один

2

3



Рис.2. Эскиз конструкции генератора: І-основание защитного соленоида: 2основание ГИН; З-кожух генератора; 4-каркас защитного соленоида; 5-модульный разрядник; 6-ГИН-500-0,02/5; 7-защитный соленоид; 8 -основание ИТ: 9-первичная обмотка ИТ: ІО-вторичная обмотка ИТ: II- межобмоточный изолятор; 12-накопительные емкости ИТ; ІЗ-охранное кольцо; 14-виход високого напряжения; 15-зарядный резистор конденсаторов ИТ; 16-ввод высокого постоянного напряжения.

разрядник <sup>/4/</sup>, собранный из модулей-секций в виде труби(5) из оргстекла. Вся конструкция генератора помещена в стальной кожух (3) и заполнена трансформаторным маслом.

На рис. За приведена осциллограмма зарядного напряжения ДФЛ без срабатывания ее разрядника. Расчетная кривая (пунктир) построена при указанных параметрах генератора без учета затуханий в контурах. При измерениях использовались осщилограф И2-7 и омический делитель напряжения на основе малоиндуктивных резисторов ТВО-60 (високовольтное плечо) и ТВО-2 (низковольтное плечо). Осциллографирование провоцилось при следующем режиме работы генератора: зарядное напряжение конденсаторов ГИН составляло + 25 кВ, а конденсаторов ИТ - ± 25 кВ, в разрялнике генератора-воздух при атмосферном давлении, в разряднике линии-элегаз при давлении 0,55 MIIa (зазор ~ II мм). Расчетные значения амплитуд первого и второго максимумов зарядного напряжения линии в этом режиме составляют 80 и 512,5 кВ при времени заряпа до максимумов 650 и 1825 нс. Экспериментальные значения соси 425 кВ при времени заряда 675 и 1800 нс. Точтавили ~ 75 ность измерений амплитулы и времени заряда по осциллограммам оценивается в 7-10%. Потери зарядного напряжения линии составляют ~ 17%.



Рис. 3. Расчетные (пунктирные) и экспериментальные (сплошная линия) кривые зарядного напряжения линии в ИТ (б) и в предложенном генераторе (а).

Следует отметить, что в генераторе данного типа амплитуда первого максимума зарядного напряжения значительно меньше, чем в схеме с ИТ. Для сравнения на рис. Зб приведены расчетная (пунктирная) и экспериментальная (сплошная) кривне зарялного напряжения линии в схеме с "чистым" ИТ, т.е. при отключенном ГИН-500-0,02/5. Осциллогра-Фирование проводилось при зарялном напряжении накопительных конленсаторов ИТ, равном + 12,5 кВ, ИТ находился в воздухе, кожух снят. Видно, что в схеме с ИТ амплитуда первого максимума зарялного напряжения линии больше половины амплитуды второго (рабочего) максимума. Максимальные расчетные и экспериментальные значения амплитулы заряпного напряжения линии в этом случае равны 180 и 167 кВ соответственно, т.е. потери напряжения в ИТ составляют ~ 7%. Увеличение потерь напряжения в предложенном генераторе заряда до 17% связано с потерями в ГИН и задержкой срабатывания разрядника ИТ относительно разрядника IVH. Замечено (на самопробое), что меньшие потери напряжения наблюдаются в случае, когда первым срабатывает разрядник ИТ.

Заданная амплитуда (500 кВ)выходного импульса генератора была достигнута при зарядном напряжение конденсаторов ГИН и ИТ - 50 кВ вместо 85 кВ без ИТ,что в I,7 раза меньше,чем при заряде ДФЛ через индуктивность. При этих испытаниях амплитуда импульса заряда ДФЛ достигала 800 кВ, дальнейшее повышение зарядного напряжения привело к пробов межобмоточного изолятора ИТ.

Таким образом, результати испытаний генератора с ИТ вместо индуктивности по новой схеме показали хорошее совпадение расчетных и экспериментальных результатов. Схема обеспечивает лучшее согласова-

4

5

ние ГИН с емкостной нагрузкой при повышении зарядного напряжения ДФЛ. При разрешении проблеми высоковольтной межобмоточной изоляции (например; спиральный тип ИТ <sup>/5/</sup>) в данной конструкции генератора можно увеличить амплитуду выходного импульса до I МВ и выше.

Однако принципиальным моментом для работы такого генератора со стримерной камерой на ускорителе остается повышенная величина задержки (1,5-2 мкс) выходного импульса. Тем не менее в ряде устройств, а также при работе камеры в режиме запоминания следов (двухимпульсное питание) это обстоятельство не является недостатком.

В заключение авторы выражают благодарность. Графову Н.Н. и Садилову В.П. за помощь в изготовлении ИТ, Ряховскому В.Н. и Хусаинову Э.К. за помощь в монтаже генератора, а также Глаголевой Н.С. и Нургожину Н.Н. за полезные обсуждения.

### ЛИТЕРАТУРА

- I. Аксиненко В.В. и др. ОИЯМ, I3-86-I49, Дубна, I986.
- 2. Аксиненко В.Д. и др. Авторское свидетельство СССР № 989747 от 03.06.81. Бюл. ОИПОТЗ, 1983, № 2, с.259.
- 3. Аксиненко В.Д. и др. ОИЯИ, 13-82-764, Дубна, 1982.
- 4. Аксиненко В.Д. и др. ОИЯИ, РІЗ-83-184, Дубна, 1983; ПТЭ, 1984, № 2, с.101.
- 5. Rohwein G.J. IEEE Trans. Nucl.Sci., 1979, vol. NS5-26, No.3, p.4211.

# Рукопись поступила в издательский отдел 3 июня 1986 года.

#### НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

#### Вы можете получить по почте перечисленные ниже книги,

#### если они не были заказаны ранее.

| Д2-82-568          | Труды совещания по исследованиям в области<br>релятивистской ядерной физики. Дубна, 1982.                                                                                   | 1 р. 75 к.          |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| д9-82-664          | Труды совещания по коллективным методам<br>ускорения. Дубна, 1982.                                                                                                          | 3 р. 30 к.          |
| ДЗ,4-82-704        | Труды IV Международной школы по нейтронной<br>физике. Дубна, 1982.                                                                                                          | 5 р. 0 <b>0 к</b> . |
| Д11-83-511         | Труды совещания по системам и методам<br>аналитических вычислений на ЭВМ и их применению<br>в теоретической физике. Дубна, 1982.                                            | 2 р. 50 к.          |
| д7-83-644          | Труды Международной школы-сенинара по физике<br>тяжелых ионов. Алушта, 1983.                                                                                                | 6 р. 55 к.          |
| Д2,13-83-689       | Труды рабочего совещания по проблемам излучения<br>и детектирования гравитационных волн. Дубна, 1983.                                                                       | 2 р. 00 к.          |
| Д13-84 <b>-63</b>  | Труды XI Международного симпозиума по<br>ядерной электронике. Братислава,<br>Чехословакия, 1983.                                                                            | 4 р. 50 к.          |
| Д2-84-366          | Труды 7 Международного совещания по проблемам<br>квантовой теории поля. Алушта, 1984.                                                                                       | 4 р. 30 к.          |
| д1,2-84-599        | Труды VII Международного семинара по проблемам<br>Физики высоких энергий. Дубна, 1984.                                                                                      | 5 р. 50 к.          |
| Д17-84-850         | Труды Ш Международного симпозиума по избранным<br>проблемам статистической механики. Дубна,1984.<br>/2 тома/                                                                | 7 р. 75 к.          |
| Д10,11-84-818      | Труды V Международного совещания по про-<br>блемам магематического моделирования, про-<br>граммированию и магематическим матодам реше-<br>ния физических задач. Дубна, 1983 | 3 р. 50 к.          |
|                    | Труды IX Всасоюзного совещания по ускорителям<br>заряжанных частиц. Дубна, 1984 /2 тома/                                                                                    | 13 р.50 к.          |
| Д4-8 <b>5</b> -851 | Труды Маждународной школы по структуре<br>лдра, Лпушта, 1985.                                                                                                               | 3 р. 75 к.          |
| д11-85-791         | Труды Мождународного совещания по аналитическим<br>вычислениям на ЭВМ и их применению в теоретиче-<br>ской физике. Дубна,1985.                                              | 4 p.                |
| д13-85-793         | Труды .XП Международного симпозиуна по ядерной<br>электронике. Дубна 1985.                                                                                                  | 4 р. 80 к.          |
| 2                  |                                                                                                                                                                             | TO STROCY           |

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

## ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

| Индек | с Тематика                                                                                                           |
|-------|----------------------------------------------------------------------------------------------------------------------|
| 1.    | Экспериментальная физика высоких энергий                                                                             |
| 2.    | Теоретическая физика высоких энергий                                                                                 |
| 3.    | Экспериментальная нейтронная физика                                                                                  |
| 4.    | Теоретическая физика низких энергий                                                                                  |
| 5.    | Математика                                                                                                           |
| · 6.  | Ядерная спектроскопия и радиохимия                                                                                   |
| 7.    | Физика тяжелых ионов                                                                                                 |
| 8.    | Криогеника                                                                                                           |
| 9.    | Ускорители                                                                                                           |
| íū.   | Автоматизация обработки эксперинентальных<br>данных                                                                  |
| 11.   | Вычислительная математика и техника                                                                                  |
| 12.   | Химия                                                                                                                |
| 13.   | Техника физического эксперимента                                                                                     |
| 14.   | Исследования твердых тел и жидкостей<br>ядерными методами                                                            |
| 15.   | Экспериментальная физика ядерных реакций<br>при низких энергиях                                                      |
| 16.   | Дозиметрия и физика защиты                                                                                           |
| 17.   | Теория конденсированного состояния                                                                                   |
| 18.   | Использование результатов и методов<br>фундаментальных физических исследований<br>в смежных областях науки и техники |
| 19.   | Биофизика                                                                                                            |

Аксиненко В.Д. и др. Импульсный трансформатор вместо зарядной индуктивности в высоковольтных генераторах

Приводится новая принципиальная схема импульсного заряда двойной формирующей линии /ДФЛ/ на основе комбинации генератора импульсных напряжений /ГИН/ по схеме Аркадьева-Маркса и импульсного трансформатора /ИТ/ без сердечника. Даны основные расчетные соотношения для согласованного /по передаче энергии/ режима ее работы. Описаны экспериментальные результаты проверки работы схемы в генераторе высоковольтных наносекундных импульсов с амплитудой до 500 кВ. Замена зарядной индуктивности импульсным трансформатором позволила лучше согласовать емкость пятиступенного ГИН "в ударе" /~4 нФ/ с емкостью ДФЛ /~0,6 нФ/ и повысить напряжение заряда линии в 3,4 раза по сравнению с выходным напряжением ГИН; время заряда линии при этом составило ~1,8 мкс. На активной нагрузке /~38 Ом/, имитирующей импеданс стримерной камеры, заданная амплитуда /~500 кВ/ выходного импульса генератора была достигнута при зарядном напряжении конденсаторов ГИН и ИТ, равном 50 кВ, что в 1,7 раза

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1986

#### Перевод Л.Н.Барабаш

Aksinenko V.D. et al. Pulse Transformer Instead of Charge Inductance in High-Voltage Generators 13-86-350

13-86-350

A new electrical circuit used to charge a pulse forming line (Blumlein) is proposed. It is based on the combination of an Arkadiev-Marx generator and a pulse transformer with no core. Some results of working the circuit in a high-voltage generator with a pulse amplitude of 500 kV are described. The use of the pulse transformer in lieu of charge inductance improved the energy transfer coefficient from the Arkadlev-Marx generator with a ~4 nF capacitance to the Blumlein with a ~0.6 nF capacitance and increased the Blumlein charge voltage by a factor of 3.4 as compared to the Marx generator output voltage. The rise time of the Arkadiev-Marx output voltage on the Blumlein is 1.8 mks. The amplitude of a 500 kV Blumlein output voltage of 50 kV on the condensers of the Arkadiev-Marx generator and the pulse transformer.

The investigation has been performed at the Laboratory of High Energy, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1986