

C341.1r

Объединенный институт ядерных исследований дубна

13-84-428

4440/84 А.А.Жильцов^{*}, В.А.Морозов, В.И.Разов^{*}, В.И.Стегайлов, В.Таньска-Крупа

> ОПРЕДЕЛЕНИЕ ВРЕМЕНИ ЖИЗНИ ИЗОМЕРНЫХ СОСТОЯНИЙ В ¹⁷² УЬ И ¹⁸¹ Та ОДНОКРИСТАЛЬНЫМ СЦИНТИЛЛЯЦИОННЫМ ВРЕМЕННЫМ СПЕКТРОМЕТРОМ

Направлено в журнал "Приборы и техника эксперимента"

Дальневосточный государственный университет им.Суханова, Владивосток

1984

Метод однокристальной временной спектрометрии является одним из вариантов метода задержанных совпадений, позволяющего при использовании сцинтиллятора и одного фотоумножителя реализовать 4π -геометрию, что существенно повышает эффективность регистрации излучений, заселяющих и разряжающих изомерное состояние в ядре. В ^{/1,2} было показано, что при помощи однокристального сцинтилляционного временного спектрометра /0СВС/ можно проводить измерения периодов полураспада изомерных состояний в диапазоне от 60 до 700 нс.

В данной работе показано, что методом OCBC столь же эффективно можно проводить измерения времени жизни возбужденных состояний в наносекундном диапазоне при использовании сцинтилляторов с малым временем высвечивания и временных фотоумножителей.

ПОСТАНОВКА ЭКСПЕРИМЕНТА

Блок-схема 0СВС и временная последовательность импульсов представлены на рис.1 В установке использовались блоки быстрой наносекундной электроники, разработанные в Лаборатории ядерных проблем 0ИЯИ $^{/3/}$, фотоумножитель XP-1020 и сцинтиллятор NE-104 640×40 мм с колодцем. Радиоактивные источники ^{172}Lu и 181 Hf помещались в колодец. Низкоэнергетическая часть регистрируемого излучения выделялась с помощью дифференциального дискриминатора DD(D₁ + D₂ + AC) и соответствовала зарядке изомерного уровня. Интегральный дискриминатор D₈ выделял высокоэнергетическую часть излучения, которая соответствовала разрядке изомерного уровня.

РЕЗУЛЬТАТЫ

Нами измерены периоды полураспада возбужденных состояний 172УЪ и ¹⁸¹Та с энергией 1172,3 и 482,2 кэВ соответственно. Полученные результаты представлены на рис.2 и в табл.1. На рисунках видно, что кривая совпадений помимо задержанной части имеет также мгновенную часть, которая обусловлена некоторым перекрытием порогов дифференциального и интегрального дискриминаторов. С целью контроля аппаратурного разрешения ОСВС был измерен спектр совпадений на источнике ⁶⁰Со в тех же условиях /рис.2а/. Данные, приведенные в табл.1, свидетельствуют о хорошем согласии полученных значений периода полураспада с ранее известными данными.

1

Рис.1. а - Блок-схема ОСВС: DD дискриминатор, О - одновибратор, AC - схема антисовпадений, ВАП время-амплитудный преобразователь, З - задержка, АИ - анализатор импульсов; б,в - временная последовательность импульсов разных амплитуд.

Рис.2. а – Период полураспада состояния 1172,3 кэВ в 172 Yb /цена канала $\Delta t_k = 0,64$ нс/канал/. б – Период полураспада состояния 482,2 кэВ в 18 Ta /цена канала $\Delta t_k = 0,24$ нс/канал/.

Периоды полураспада некоторых возбужденных состояний в ¹⁷²Yb и ¹⁸¹Ta.

	Еур, кэВ	Т _{1/2} ,(нс)* /наст.работа/	Т _{1/2} ,(нс)	
172Yb	1172,3	8,85 (31)	8,14 (22) 14/	
¹⁸¹ Ta	482,2	10,21 (35)	10,67 (5) 15/	

* Запись 8,85(31) означает 8,85+0,31.

ОГРАНИЧЕНИЯ МЕТОДА ОСВС На величину измеряемого периода полураспада

Ограничения метода ОСВС при данной постановке опыта /рис.1а/ непосредственно связаны с длительностью анализируемого импульса и возможностью анализа временного интервала Δt между моментами срабатывания нижнего порога V_{DD} дифференциального дискриминатора и порогом V_D интегрального дискриминатора *. Очевидно, что в случае, представленном на рис.16, корректное определение периода полураспада возможно только при полном разделении во времени импульсов, связанных с заселением и разрядкой изомерного состояния. При наложении переднего фронта последующего импульса на задний фронт предыдущего измерения также возможны, но ошибка в определении $T_{1/2}$ будет зависеть от максимальной энергии излучения, разряжающего изомерный уровень, и от уровня порога V_D .

В случае, представленном на рис.2в, при использовании дифференциального дискриминатора, выделяющего низкоэнергетическое излучение, возникает новое ограничение на возможность определения минимального интервала времени. Это ограничение связано с величиной мертвого времени дифференциального дискриминатора. Проведенные нами измерения были осуществлены по схеме, показанной на рис.1а.

С целью оценки предельно достижимого временного разрешения в методе ОСВС нами были проведены вычисления формы импульса тока /длительности импульса/ на выходе ФЗУ при использовании различных сцинтилляторов и фотоумножителей. Были рассмотрены два типа фотоумножителей - ФЗУ-87 и ХР-1020 /табл.2/ и некоторые сцинтилляторы /табл.3/. Для описания формы импульса тока при

* Необходимо иметь в виду, что запаздывающим может быть импульс как с большей, так и с меньшей амплитудой /рис.16,в/.

Таблица 1

Таблица 2

/8 + 13/

Тип	Спектральная чувствительность /нм/	t ₃ /HC/	tф /нс/	σ.** /нс/	
фЭУ-87	300÷600	30*	1,5	1,25	
XP 1020	350÷600	28	1,6	1,33	

Основные характеристики ФЭУ-87 и ХР-1020

* Величина, использованная в расчетах.

** Временная дисперсия ФЭУ о определялась из соотношения $t_{\rm tb} = 1, 2\sigma^{/7/}$.

Рис. З. Длительность токового импульса на выходе ФЭУ-87 /ХР-1020/ для некоторых сцинтилляторов /площади импульсов нормированы/.

засветке ФЭУ бесконечно короткой световой вспышкой можно воспользоваться функцией Гаусса /6/

$$I(t) = \frac{Q}{G\sqrt{2\pi}} e^{-(t-t_3)^2/2\sigma^2}, \qquad /1/$$

где Q - величина заряда, σ - временная дисперсия ФЭУ, t3 - временной интервал между моментом засветки фотокатода ФЭУ и появлением сигнала на аноде ФЭУ /время пролета/. При засветке ФЭУ световыми вспышками от сцинтиллятора со временем высвечивания т

$$I(t) \sim \frac{1}{\tau} \cdot e^{-t/\tau}$$
, /2

а так как для большинства сцинтилляторов помимо основной компоненты со временем высвечивания т обнаружена и вторая компонента

	*								
•	A 5/1 m	375/-	406	410/-	447	413/-	330	220/310	
	₽ М относительная интенсивность	0,12		0,11		0,19		0,80	
	(BC) (EC)	12,5	- 1. 1.	33	1	2200		620	
	(IC) (Hc)	I,7	1,9	4,5	30	230	2,8	0,6	
	$\int (r/cM^3)$	I,032	I,032	1,I6	I,25	3,67	4,64	4,88	
datvadav aguanu	Относительная конверсионная эййективность	0,55	0,68	0,50	I,00	2,30	0,22 /12/ 0,13 /13/	0,46	
5	Тип сцинтилитора	NE III	NE 104	Стильбен	Антрацен	NaI(Te)	CSF	Ba F2	

ечивания BbicB спектре A компонент интенсивности максимальной COOTBETCTBYMT сцинтиллятора. м ү н 0 ~

#

Таблица 4

Тип сцинтиллятора	Т _{1/2} , (нс)	Т _{1/10} (нс)	Т _{1/100} (нс)
ФЭУ *	3	6	9
NE 104	4	8	14
NE 111**	4	9/8/	23/13/
Стильбен	6	15	27
Антрацен	20	69	138
BaF2	3,5	7	>1000
CsF	4,5	11	18,5
Nal(T1)	159	\$ 530	>1000

Длительность импульса тока на выходе ФЭУ /ФЭУ-87, XP-1020/

* При засветке ФЭУ бесконечно короткой световой вспышкой.

** Величины, приведенные в скобках характеризуют длительность импульса без учета медленной компоненты высвечивания сцинтиллятора.

с гораздо большим временем высвечивания, то форма импульса тока

$$I(t) \approx \frac{f_{\delta}}{r_{\delta}} e^{-t/r_{\delta}} + \frac{f_{M}}{r_{M}} e^{-t/r_{M}}, \qquad (3)$$

где f характеризует относительную интенсивность быстрой и медленной компонент высвечивания сцинтиллятора. Результат свертки экспоненциального распада с конечным временным разрешением ФЗУ приводит к изменению формы кривой радиоактивного распада. Математическое выражение этого процесса после проведения нормировки имеет следующий вид:

$$I(t) = \frac{1}{\sigma\sqrt{2\pi}} \int_{0}^{t} e^{-(t-t'-t_3)^2/2\sigma^2} \left(\frac{f_{\delta}}{r_{\delta}} e^{-t'/\tau_{\delta}} + \frac{f_{M}}{r_{M}} e^{-t'/\tau_{M}}\right) dt'. /4/$$

Момент t = 0 соответствует времени возбуждения сцинтиллятора. В своих расчетах мы не учитывали время нарастания сцинтилляции, так как время нарастания фронта импульса ФЭУ имеет обычно тот же порядок величины.

Так как временная дисперсия рассмотренных фотоумножителей отличается незначительно⁷⁷, то для них нами были получены сходные результаты, характеризующие длительность импульса тока с выхода ФЭУ. Эти результаты представлены в табл.4 и на рис.3. Проведенные оценки показывают, что для данных фотоумножителей при допущении наложения двух импульсов на уровне 0,1 от полной амплитуды меньшего импульса /рис.16/ возможно определение периодов полураспада возбужденных состояний, начиная с 7 нс, при использовании сцинтилляторов с временем высвечивания $\tau = 0,6$ нс.

ЛИТЕРАТУРА

- 1. Морозов В.А., Муминов Т.М. ПТЭ, 1973, 1, с.79.
- 2. Будзынски М. и др. ЯФ, 1975, 21, с.913.
- 3. Борейко В.Ф. и др. ОИЯИ, 13-6396, Дубна, 1972.
- 4. Belt R.A. et al. Nucl. Phys.A, 1969, 134, p.225.
- 5. Mouchel D., Hansen H.H. Z.Phys.A, 1984, 315, p.113.
- 6. Льюис И., Уэлс Ф. Миллимикросекундная импульсная техника. ИЛ, М., 1956.
- 7. Басиладзе С.Г. ОИЯИ, 13-7955, Дубна, 1974.
- 8. Басиладзе С.Г. ОИЯИ, 13-7957, Дубна, 1974.
- 9. Laval M. et al. Nucl.Instr.and Meth., 1983, 206, p.169.
- 10. Kelly T.M., Merrigan J.A. Nucl.Instr.and Meth., 1973, 109, p.233.
- 11. Nuclear Enterprises Ltd. Scintillator Catalogue, 1973.
- 12. Сцинтилляционный метод в радиометрии. /Под ред. Б.В.Рыбакова/. Госатомиздат, М., 1961.
- 13. Moszynsky J.K. et al. Nucl.Instr. and Meth., 1981, 179, p.271.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы	можете	получиз	гь по	почте	перечис	ленные	ниже	KHNLN
	e	CAN OHN	H8 6	NJN 38	казаны	Danee.		•

	Труды VI Всесоюзного совещания по ускорителян заря- женных частиц. Дубна, 1978 /2 тома/	7 p. 40 k.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8 p. 00 ĸ.
	Труды УШ Всесоюзного совещания по ускорителям заряженных частиц. Протвино, 1982 /2 тома/	,11 р. 40 к.
A11-80-13	Труды рабочего совещания по систенам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике, Дубна, 1979	3 p. 50 ĸ.
A2-81-543	Труды VI Международного совещания по пробленам кван- товой теории поля. Алушта, 1981	2 p. 50 ĸ.
A10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2 p. 50 K.
A17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5 p. 40 ĸ.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3 р. 80 к.
A2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1 р. 75 к.
Д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3 р. 30 к.
ДЗ,4-82-704	Труды IV Неждународной школы по нейтронной физике. Дубна, 1982.	5 p. 00 K.
A11-83-511	Труды совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике. Дубна, 1982.	2 р. 50 к.
Д7-83-644	Труды Международной школы-семинара по физике тижелых ионов. Алушта, 1983.	6 p. 55 ĸ.
A2,13-83-689	Труды рабочего совещания по пробленам излучения и детектирования гравитационных волн. Дубна, 1983.	2 р. 00 к.
A13-84-63	Труды XI Международного симпозиума по ядерной электронике. Братислава,	4.р. 50 к.
	Чехословакия, 1983.	

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

=

Жильцов А.А. и др. 13-84-428 Определение времени жизни изомерных состояний в 172ур и 181Та однокристальным сцинтилляционным временным спектрометром В данной работе показано, что методом однокристальной сцинтилляционной временной спектрометрии можно проводить измерения периодов полураспада возбужденных состояний ядер начиная с 7 нс. Измерено время жизни возбужденных состояний в 178 Yb/T_{1/2} = 8,85+0,31 нс/ н 181Ta / T_{1/2} = 10,21+0,35 нс/. Работа выполнена в Лаборатории ядерных проблем ОИЯИ. Препринт Объединенного института ядерных исследований. Дубна 1984 Перевод О.С.Виноградовой Zhiltsov A.A. et al. 13-84-428 Determination of Lifetimes of Isomeric States in ¹⁷⁸Yb and ¹⁸¹Ta Using the Monocrystal Scintillation Time Spectrometer It is shown that using the method of monocrystal scintillation time spectroscopy it is possible to measure half-lives of nuclear excited states, starting from 7 ns. The lifetimes of excited states in 172 Yb have been measured / $T_{1/2} =$ = 8.85+0.31 ns) and 181 Ta / $T_{1/2} = 10.21+0.35$ ns/. The investigation has been performed at the Laboratory of Nuclear Problems, JINR,

Preprint of the Joint Institute for Nuclear Research. Dubna 1984