

13-84-333

1984

С.Н.Беляев, А.Б.Козин, Т.Н.Мамедов, В.С.Роганов, В.А.Семенов, А.А.Солнышкин

СПЕКТРОМЕТР НЕЙТРОНОВ С ДИСКРИМИНАЦИЕЙ у -КВАНТОВ ПО ФОРМЕ ИМПУЛЬСОВ

Направлено в журнал "Приборы и техника эксперимента"

* НИИМФ Саратовского государственного университета

В исследованиях нейтронных каналов различных реакций часто требуется спектрометрия нейтронов, имеющих энергию больше нескольких сотен кэВ при значительном у-фоне. Для этих целей пригодны кристалл стильбена и некоторые жидкие органические сцинтилляторы, у которых формы сцинтилляций от у-квантов /комптоновских электронов/ и нейтронов /протонов отдачи/ различны, что позволяет идентифицировать нейтроны на у-фоне.

В настоящее время в литературе описаны различные схемы детекторов на основе органических сцинтилляторов с электронными блоками для дискриминации нейтронов и у-квантов ⁽¹⁻⁵⁾. Часть этих детекторов обладает большим порогом регистрации нейтронов 21,5 МэВ^(2,3). Спектрометры, обладающие более низким порогом, построены на малодоступных элементах и сложны в настройке ⁽⁴⁾.

В разработанном нами нейтронном спектрометре в качестве детектора использован кристалл стильбена 30х20 мм и фотоэлектронный умножитель ФЭУ-93. При выборе ФЭУ учитывались исследования/2/, в которых показано, что в области энергий нейтронов >2 МэВ с помощью ФЭУ-93 удается получить коэффициент (у-ш) = разделения, близкий к теоретически возможному.

В схеме (у-в)-разделения, приведенной на рис.1, использован метод идентификации нейтронов, основанный на сравнении полного заряда импульса тока ФЭУ с зарядом быстрого компонента этого

Д1.Д2 - Д10 Д3.Д4 - К.Д 503А

Рис.1. Схема блока идентификации у-квантов и нейтронов.

1

66 - HOCD TYT ПЛЕННЫХ ИССЛЕДОВЗНИЙ **GHEINCTEHA**

импульса $^{/6/}$. Экспериментально установлено, что наиболее низкий порог (y-m) -разделения получается при постоянной времени сброса заряда на двенадцатом диноде ФЭУ -500 нс, которая задается элементами R_3 , C_2 , C_3 . Быстрый компонент импульса не несет информацию о типе частиц и имеет длительность - 20 нс. Поэтому постоянная времени заряда емкости C_4 должна быть - 20-25 нс, а постоянная времени разряда - .500 нс. Окончательная настройка схемы сложения выполняется резистором R_5 до получения максимальной компенсации импульсов от y-квантов. Форма импульса для y и m на емкости C_5 показана на рис.2.

Рис.2. Форма сигналов от нейтронов и У-квантов на входе усилителя-дискриминатора. Одно деление по шкале t соответствует 100 нс.

Обычно связь блока сложения зарядов с последующим усилителем емкостная^{/1,6,7/}. В этом случае при регистрации детектором у квантов на разделительную емкость приходят только отрицательные импульсы. При разряде этой емкости возникает положительный сигнал /выброс/ с амплитудой, пропорциональной энергии зарегистрированного у -кванта. В результате у -кванты большой энергии могут регистрироваться как нейтроны. Это ухудшает коэффициент подавления. у -квантов в области больших энергий и сужает энергетический диапазон спектрометра. Применение схемы двойного сложения^{/7/} полностью не устраняет данный эффект. Очевидно, что для получения низкого порога /~300 кэВ для нейтронов/ и широкого энергетического диапазона регистрируемых частиц /до 10 МэВ/ положительный выброс при регистрации у-квантов должен быть минимальным.

В схеме, приведенной на рис.1, связь блока сложения зарядов с усилителем непосредственная, т.е. положительный выброс, возникающий при регистрации высокоэнергетичных У-квантов, в данной схеме отсутствует. Однако наличие конденсатора Сі в цепи 12 динода ФЗУ приводит к дрейфу нулевого уровня усилителя в зажисимости от загрузки ФЗУ и энергии регистрируемых частиц, что происходит вследствие заряда конденсатора Сі однополярными импульсами. Дрейф весьма медленный, что обусловлено большой постоянной времени этой цепи. При непосредственной связи усилителя /M1/ с формирователем /M2/ это привело бы к зависимости порога (y-n) -разделения от загрузки. Для ликвидации этого недостатка нет необходимости применять сложную схему стабилизации нулевой линии. Поскольку не требуется высокой чувствитель-

Рис. 3. Функциональная схема спектрометра.

ности от Формирующего каскада /так как импульсы (у-п) -разделения уже усилены M1/, то между усилительным и формирующим каскадами может быть кондуктивная связь. Однако в этом случае для ограничения максимальной амплитуды положительного выброса, возникающего при разряде емкости С₆, необходимо сжать динамический диапазон импульсов (у-п) -разделения, что выполняется путем введения нелинейной обратной связи /ДЗ, Д4/ в усилитель M1. Уровень дискриминации формирователя M2 регулируется резистором R₈ так, чтобы выброс, возникающий при перезарядке емкости, не вызывал срабатывания формирователя. На выходе блока формируется прямоугольный импульс, если детектором зарегистрирован нейтрон.

Функциональная схема спектрометра приведена на рис.3. Импульс с выхода усилителя-дискриминатора поступает на вход блока временной привязки и режекции наложений. Необходимость создания схемы временной привязки обусловлена тем, что усилитель-дискриминатор имеет ненулевой порог дискриминации и поэтому существует зависимость времени задержки импульса на выходе от энергии зарегистрированного нейтрона. Функциональная схема блока временной привязки и режекции наложений показана на рис.4а. Несмотря на колебания момента появления импульса усилителя-дискриминатора относительно момента появления входного сигнала, выходной импульс блока не флуктуирует относительно переднего фронта сигнала линейного канала, т.к. он инициируется импульсом с постоянной задержкой в точке 9.

Рис.4. Функциональная схема блока временной привязки и режекции наложений.

Схема режекции наложений предназначена для ликвидации искажений спектра, возникающих из-за наложений импульсов при работе в условиях больших загрузок. Работа схемы режекции наложений аналогична описанной в/8/, она имеет два охранных времени: "до" t, и "после" - t, Если в течение t, будет зарегистрировано две и более частицы, то сигнал управления на линейный пропускатель не выдается. Время t1 определяется временем высвечивания сцинтиллятора и постоянной времени сбора зарядов на электродах ФЭУ. В случае регистрации второй частицы в течение времени t1 < t < t 2 сигнал управления выдается только на первый импульс. Интервалы времени t1 и t2 /регулируемый/ задаются одновибраторами 082, 081 и составляют 2 и 2:40 мкс соответственно. Разрешающее время блока - 50 нс. Блок изготовлен на элементах ТТЛ. Временные диаграммы в пронумерованных точках функциональной схемы поясняют работу блока при появлении на его входе двух импульсов в интервалы времени t < t, /рис.46/ и t, <t <t, /рис.4в/.

Спектрометрический канал имеет низкое входное сопротивление /50 Ом/, что необходимо для работы схемы в условиях больших загрузок и для быстрого восстановления ФЗУ после импульсных перегрузок в случае использования слектрометра в экспериментах по время-пролетной методике. Длительность выходного импульса зависит от постоянной времени интегрирования во втором каскаде схемы. Время задержки определяется временем обработки импульсов в блоке режекции наложений. По ряду причин сигнал на выходе имеет предымпульс с амплитудой, пропорциональной амплитуде основного импульса, что затрудняет анализ сигналов в ряде амплитудных анализаторов /например, NTA-1024/ даже при их работе в режиме совпадений с внешним управлением. Кроме того, импульсы, для которых нет сигнала управления, также являются загрузкой для такого анализатора. В результате даже при небольшом количестве регистрируемых нейтронов анализатор может оказаться перегруженным и будет анализировать "меченые" сигналы с малой эффективностью, зависящей от общей загрузки и снимаемого спектра. Для ликвидации указанных недостатков в схему введен линейный пропускатель.

Исследование основных характеристик спектрометра проводилось по у-источникам ^{22}Na , ^{60}Co , ^{137}Cs , ^{241}Am и источникам нейтронов Po-Be, ^{252}Cf .

Зависимость коэффициента пропускания у-квантов К_у от энергии блоком идентификации частиц определялась как отношение количества импульсов, зарегистрированных от у-источников в соответствующих каналах амплитудного анализатора, при включенном и выключенном положениях тумблера В1 /рис.1/. В замкнутом положении он закорачивает анодную нагрузку ФЗУ. При этом как для нейтронов, так и для у-квантов на входе усилителя-дискриминатора присутствует положительный импульс и идентификация частиц не происходит. В результате спектрометр регистрирует и нейтроны, и Укванты.

На рис.5 показана зависимость коэффициента пропускания нейтронов К от их энергии /верхняя шкала/. К получен путем нормировки измеренного спектра нейтронов от ²⁵² Cf /восстановленного из аппаратурного спектра протонов отдачи методом дифференцирования, известными из ^{/9/} данными.

Рис.5. Зависимость коэффициентов пропускания у-квантов и нейтронов блоком идентификации частиц от их энергии. Энергетическая шкала нейтронов вычислена из соотношения $E_e = a \cdot E_p^{3/2}/4\pi$ я стильбена $a \approx 0,15/$, где E_e – энергия комптоновских электронов – получена из данных калибровки спектрометра по γ -источникам, E_p (E_n) – энергия протонов отдачи /энергия нейтронов/. Возможно, шкала имеет неточность, обусловленную тем, что значение a для конкретного кристалла стильбена может отличаться от 0,15, а в области энергий $E_{\gamma} < 60$ кэВ зависимость световыхода от энергии γ -квантов в стильбене отличается от зависимости при $E_{\gamma} > 60$ кэВ. Сравнение полученного нами спектра нейтронов для P_0 -Ве с имеющимися в литературе данными показывает, что погрешность в определении энергетической шкалы нейтронов в области 3+4 МэВ не более 100 кэВ.

Из рис.5 видно, что при энергии $E_n = 300$ кэВ / $E_e \approx 25$ кэВ/ коэффициенты пропускания нейтронов и У-квантов составляют 0,85 и 5·10⁻² соответственно. По мере увеличения энергии K_Y уменьшается, и в области $E_e > 100$ кэВ становится меньше 10^{-3} , а K_n увеличивается и достигает значения ~1 в области энергий $E_n >$ > 400 кэВ / $E_e \ge 38$ кэВ/. Полученные нами результаты измерения порога (у-n) -разделения и коэффициента подавления У-квантов являются одними из лучших в аналогичных экспериментах /см., например, /3,4//.

Основными элементами, определяющими порог (y-n) -разделения в приведенной схеме, являются диоды в блоке сложения зарядов. Экспериментально определено, что энергетический эквивалент падения напряжения на диодах при выбранном режиме ФЗУ близок к 6 кэВ для электронов. Оценка, выполненная на основе времени сбора заряда в динодной цепи ФЗУ, времени высвечивания медленного компонента в стильбене и энергетического эквивалента падения напряжений на динодах, показывает, что в данном спектрометре порог (y-n)-разделения практически не может быть меньше 12 кэВ / E_n - 180 кэВ/.

В заключение следует отметить, что все блоки спектрометра, за исключением блока сложения зарядов, практически не требуют настройки. Спектрометр позволяет регистрировать нейтроны при значительном фоне у -квантов в диапазоне 0,3÷10 МэВ.

- 5. Зинов В.Г. и др. ПТЭ, 1982, № 2, с.26.
- 6. Brooks F. Nucl.Instr. and Meth., 1959, 4, p.151.
- 7. Казанский Ю.А. и др. АЭ, 1966, т.20, вып.2, с.143.
- 8. Борейко В.Ф. и др. ОИЯИ, Р13-12334, Дубна, 1979.
- 9. Крошкин Н.И., Замятин Ю.С. АЗ, 1970, т.29, вып.2, с.95.

ЛИТЕРАТУРА

- 1. Бровченко В.Г. ПТЭ, 1971, № 4, с.7.
- 2. Кузнецов Д.А. и др. Препринт ИАЭ, 2360, М., 1974.
- 3. Verbitsky S.S. Nucl.Instr. and Meth., 1978, 151, p.117.
- Perkins L.J., Scott M.C. Nucl.Instr. and Meth., 1979, 166, p.451.

Рукопись поступила в издательский отдел 14 мая 1984 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7 p. 40 k.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8 p. 00 ĸ.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на 38М и их применению в теоретической физике, Дубна, 1979	3 p. 50 K.
д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3 р. 00 к.
д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5 p. 00 ĸ.
Д2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2 р. 50 к.
д10,11-81-622	Труды Международного совещания по проблемам натемати- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2 p. 50 ĸ.
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3 р. 60 к.
A17-81-758	Труды II Международного симпозиуна по избранным проблемам статистической механики. Дубна, 1981.	5 p. 40 ×.
Д1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3 p. 20 m.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3 р. 80 к.
Д7-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1 p. 75 ĸ.
Д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3 р. 30 к.
ДЗ.4-82-704	Труды IV Международной школь по нейтронной физике. Дубна, 1982.	5 p. 00 ĸ.
A2,4-83-179	Труды XУ Мендучародной школы молодых ученых по физике высоких энергий. Дубна, 1982.	4 p. 80 x.
	Труды УШ Всесоюзного совещания по ускорителям заряженных частиц. Протвино, 1982 /2 тома/	11 р. 40 м.
Д11-83-511	Труды совещания по системам и методам аналитических вычислений на ЗВМ и их применению в топовтической физикс выбыт 1982	2 0 50 4
Д7-83-644	Труды Международной школы-семинара по физике тяжелых ионов. Алушта, 1983.	6 p. 55 ×
Д2,13-83-689	Труды рабочего совещания по проблеман излучения и детектирования гравитационных волн. Дубиа, 1983.	2 p. 00 ĸ.
Заказ	HA VIIOMANYTHE KNULW MOLVT ONTH HANDABRENN DO	annecy

заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований Беляев С.Н. и др. Спектрометр нейтронов с дискриминацией у-квантов по форме импульсов

Описан спектрометр нейтронов, в который входят сцинтилляционный детектор, блок временной привязки и режекции наложений, спектрометрический канал и схема (у-п) -разделения, состоящая из блока сравнения заряда быстрого компонента сцинтилляционного импульса с его полным зарядом. Энергетический порог регистрации нейтронов составляет 300 кэВ, коэффициент подавления у -квантов - -10³. Спектрометр может работать при загрузке до 5.10⁴ имп./с.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1984

Перевод О.С.Виноградовой

Belyaev S.N. et al. A Neutron Spectrometer with $(\gamma - n)$ Pulse-Shape Discrimination

A neutron spectrometer is described. It comprises a scintillation detector and a pulse-shape discrimination circuit, consisting of the block for comparison of the fast component charge and the total charge of the scintillation pulse, amplifier-discriminator, and blocks of time coordination, overlap rejection and spectrometric channel. The energy threshold of neutron detection is 300 keV, y-quantum suppression coefficient is -10³. The spectrometer can operate at the flux up to 5.10⁴ puls./s.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1984

13-84-333

13-84-333