83-748

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

9/1-84

19F

261/84

13-83-748

И.Адам*, М.Гонусек*, М.И.Кривопустов

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ СЦИНТИЛЛЯТОРОВ **Bi₄Ge₃O₁₂ (BGO)** И ИХ ПРИМЕНЕНИЕ В ЯДЕРНОЙ ФИЗИКЕ И ДРУГИХ ОБЛАСТЯХ НАУКИ И ТЕХНИКИ

* Институт ядерной физики Чехословацкой академии наук, Прага.

введение

В последние годы значительные успехи достигнуты в производстве нового сцинтилляционного кристалла – тригерманата висмута $Bi_4 Ge_3 O_{12}$ –/сокращенно BGO/. По ряду основных параметров эти сцинтилляторы превосходят широко применяемые в ядерно-физических и других исследованиях NsJ(Tl)-сцинтилляторы.

Кристаллы BGO имеют более высокий эффективный атомный номер / $z_{3\phi\phi}$ = 74/, бо́льшую плотность /d = 7,13 г/см³/, меньшее время высвечивания /время спада интенсивности световой вспышки до I/е от начальной/, а также высокую однородность эффективности сцинтилляции. Кроме того, кристаллы BGO имеют существенно лучшие механические свойства, хорошо обрабатываются, обладают высокой химической устойчивостью и не гигроскопичны.

Названные характеристики и особенности обусловили интенсивное внедрение BGO-кристаллов в экспериментальную технику ядерной физики, физики высоких энергий и прикладных исследований в различных областях науки и техники /медицине, геологии, биологии, нейтронной физике, космических исследованиях и др./.

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВGO-СЦИНТИЛЛЯТОРОВ

Крысталлы $Bi_4 Ge_3 O_{12}$ выращиваются методом Чохральского из раствора смеси GeO₂ и Bi_2O_3 ; чистота обоих компонентов лучше 99,999%. После механической обработки один конец сцинтиллятора полируется и соединяется с фотоумножителем силиконовым маслом; остальная поверхность шлифуется наждачной бумагой и покрывается тонким слоем BaSO₄ /1/.

Кристалл тригерманата висмута является собственно сцинтиллятором, поэтому обладает высокой однородностью к эффективности испускания света. Испускаемый свет соответствует переходу ${}^{3}P_{1} \rightarrow {}^{1}S_{0}$ в ионе $Bi^{+++/2}$ (Длина волны, отвечающая максимуму спектра испускания, равна 480 нм. Время высвечивания основной компоненты 300 нс. Однако недавно была обнаружена более быстрая компонента – 60 нс; ее интенсивность составляет примерно 10%. Интенсивность высвечивания у ВGO-сцинтилляторов очень быстро падает, и через 3 мс после начала световой вспышки составляет меньше 0,005%. Козффициент преломления при комнатной температуре м длине волны 480 нм имеет значение 2,15. В таблице приведены для сравнения основные характеристики BGO- и NaJ(T1) кристаллов /3-5/.

a tra Marco Adde a statication and

1

Сравнение основных характеристик ВGO- и NaJ(Tl) - сцинтилляторов

Наименование свойств	Единица	Тип сцинтиллятора	
и характеристик	измерения	BGO	NaJ(T1)
Основные свойства			
Плотность	гсм ⁻³	7,13	3,67
Эффективный атомный номер		74	50
Радиационная устойчивость		хорошая	плохая
Твердость	единица по	-	
	шкале Мооса	~ 5	~ 2
Химическая и термическая			
устойчивость		хорошая	плохая
Гигроскопичность		нет	да
Оптические и сцинтилляционные			
Свойства			
Длина волны максимума			
интенсивности спектра излучения	HM	480	415
Интенсивность световой вспышки			
через 3 мс после се начала	7%	0,005	0,5÷5
Коэффициент преломления		2,15	1,85
Время высвечивания	нс	350	250
Эффективность сцинтилляционной			
конверсии:	%		
а/ максимальная		16	100
б/ средняя		10	
Энергетическое разрешению			
$/E_{\gamma} = 662 \text{ kgB}/$	%	9,5	7,2
Kanannyannyuaarya anaŭanna			
Рапианионная плина У	C M	1 12	2 59
Гадиационная днина, к _о	CM	22	2,J 3
длина поглощения адронов, л _о	См	23	41
толщина сцинтиллятора,			
потнощающая 90% интенсивности	10/		
$n = -\frac{1}{2}$	MM	23	10.4
$\alpha_{1} = \alpha_{2} - \alpha_{3} - \alpha_{3$		2,5	67 1
$\gamma = \gamma = \gamma = \gamma$	MoB / out	24 , 4 0 7	/ 9
(dE/dx) _{min}	MJD/ CM	7,4	4,0

Зависимость коэффициентов фотоэлектрического поглощения, комптоновского рассеяния и образования пар и их суммы от энергии гамма-квантов для кристаллов $Bi_4 Ge_3 O_{12}$ и NaJ(T1) показана на рис.1. Линейный показатель полного поглощения для энергии гамма-квантов, равной 1 и 10 МэВ, соответственно в 2,5 и 2,1 раза

Рис.1. Энергетическая зависимость коэффициентов полного поглощения гамма-квантов (μ), фотоэлектрического эффекта (r), комптоновского рассеяния (σ) и образовання пар (π) для кристаллов BGO/слева/ и NaJ(T1)/справа/. По оси ординат – энергия гамма-квантов E_{μ} , в MэB.

больше для BGO-сцинтиллятора, чем для NaJ(T1).Этому значению отвечает такое же уменьшение линейных размеров BGO по сравнению с NaJ(T1),что приводит к уменьшению объема кристалла BGO в 16 и 9 раз соответственно.

Бо́льший эффективный атомный номер BGO -сцинтиллятора способствует бо́льшему значению отношения фотопик/комптон, что прямо отражается на форме спектра гамма-квантов.

Для сравнения на рис.2 и 3 приведены спектры гамма-квантов, соответствующие распаду 137 Сs и 24 Na, которые измерены с помощью кристаллов BGO и NaJ(T1) одинаковых размеров /диаметром 38 мм, высотой 38 мм/. Интенсивность пика полного поглощения для гаммаквантов с энергией 662 кэВ для BGO-сцинтиллятора в 3,3 раза больше по сравнению со сцинтиллятором NaJ(T1).Для спектра, измеренного BGO-кристаллом, значительно лучше и отношение фотопик/комптон. Как видно из рис.3, эти характеристики улучшаются еще больше при регистрации гамма-квантов с энергией 1369 и 2754 кэВ. В спектре, измеренном BGO-кристаллом, сильно подавлены интенсивности ликов однократного и двукратного вылетов.

Зависимость разрешения детектора BGO от энергии гамма-квантов ^{/6/} приведена на рис.4. Разрешение пропорционально $E_{\gamma}^{-\frac{1}{2}}$ и почти в два раза хуже, чем у NaJ(Tl)-кристалла одинаковых размеров. Недавно стало известно^{/3/}, что японская фирма Хитачи /Hitachi/ с помощью новой технологии очистки исходных материа-

Рис.2. Спектры гамма-квантов, образующихся при распаде ¹³⁷Сs, измеренные за одинаковое время с помощью кристаллов BGO /вверху/ и NaJ(T1) /внизу/ одинакового размера: диаметр 38 мм, высота 38 мм. По оси абсцисс – номер канала амплитудного анализатора, По оси ординат – интенсивность в относительных единицах.

Рис.3. Спектры гамма-квантов, образующихся при распаде ²⁴ Na, измеренные за одинаковое время с помощью кристаллов ВСО /вверху/ и NaJ(T1)/внизу/ одинакового размера /диаметром 38 мм, высотой 38 мм/. По осн абсцисс – номер канала амплитудного анализатора, по оси ординат – интенсивность в относительных единицах.

Рис.4. Зависимость разрешения ВСО-крнсталла /диаметром 38 мм, высотой 38 мм/ от энергии гаммаквантов Е_у.

лов увеличила эффективность сцинтилляционной конверсии с 10% до 16%. Это позволило улучшить энергетическое разрешение с 15% до 9,5% для гамма-квантов с энергией 662 кэВ. О дальнейшем улучшении разрешения до 8,9% сообщено фирмой Харшоу /Harshaw/^{3/}.

При регистрации гамма-квантов и заряженных частиц с энергиями порядка десятков - сотен МэВ кристаллы BGO не уступают по энергетическому разрешению кристаллам NaJ(T1)^{/1,5,7/}На рис.5 показана зависимость энергетического разрешения BGO-кристалла, имеющего форму параллелепипеда /15×15×20 см³/, для электронов с энергией от 10 МэВ до 10 ГэВ^{/4/}.

Рис.5. Зависимость разрешения ВGO-кристалла /15x15x20 см³/ от энергии электронов в диапазоне от 10 МэВ до 10 ГэВ.

На рис.6 показана зависимость эффективности регистрации пиков полного поглощения от энергии гамма-квантов для BGO- и NaJ(T1)кристаллов одинаковых размеров /диаметром 38 мм, высотой 38 мм/, полученная в работе^{/6/}. Экспериментальные значения эффективности были определены регистрацией гамма-квантов, соответствующих распадам ⁵⁷ Co, ¹³³ Ba , ²² Na , ¹³⁷ Cs , ⁵⁴ Mn , ⁶⁰ Co , ²⁰⁸ T1 и ¹⁵ O.

Рис.6. Зависимость эффективности (є) регистрации пиков полного поглощения ВСО и NaJ(T1) кристаллами одинаковых размеров /диаметром 38 мм, высотой 38 мм/ от энергии гамма-квантов.

Сечение захвата тепловых нейтронов BGO -сцинтиллятором в четыре раза меньше, чем кристаллом NaJ(T1) одинакового объема ^{/8/}. Однако эффект подавления регистрации нейтронов по сравнению с регистрацией гамма-квантов существенно больше, так как при регистрации гамма-квантов для получения одинаковой статистики достаточен BQO-кристалл значительно меньших размеров, чем кристалл NaJ(T1).По этой причине и фоновые условия при использовании BGOсцинтиллятора существенно лучше по сравнению с NaJ(T1).

Для быстрых нейтронов с энергией в несколько десятков МэВ наблюдается совершенно иная картина. На рис.7 показаны спектры нейтронов с энергией 75 МэВ из реакции 7 Li(p,n) 7 Be, зарегист-рированные BGO и NaJ(T1) -кристаллами $^{/9/}$. Эффективность регистрации нейтронов BGO сцинтиллятором составляет 4,4%, а кристаллом NaJ(T1) - около 0,4%.

Рис.7. Спектры нейтронов по времени пролета из реахции ⁷Li(p,n)⁷Be, зарегистрированные BGO /сплошная линия/ и NaJ(T1) /пунктирная линия/ кристаллами /временная шкала - 0,4 нс/канал/.

Кристаллы BGO успешно используются и в экспериментах по y-y -совпадениям, несмотря на то, что в области низкоэнергетических гамма-квантов /сотни кэВ/ их временные характеристики несколько хуже, чем у NaJ(T1)-детекторов /10,11/. Кривая задержанных совпадений двух аннигиляционных гамма-квантов, регистрируемых кристаллами CsF и BGO /диаметром 20 мм, высотой 30 мм/, приведена в работе /11/. Ширина кривой задержанных совпадений на ее полувысоте равна 1,9 нс. После замены BGO-сцинтиллятора на NaJ(T1) одинаковых размеров временное разрешение улучшается до 0,75 нс.

Влияние охлаждения кристалла BGO/2,4 мм x 5 мм x 20 мм/и фотоэлектронного умножителя на свойства детектора исследовалось в работе ^{/12/}. При снижении температуры от +30°C до -78°C высота импульсов увеличилась в 2,9 раза, энергетическое разрешение улучшилось в 1,6 раза, а временная постоянная увеличилась в 4 раза. Однако с учетом уменьшения шума фотоэлектронного умножителя и увеличения высоты импульса предполагается, что временное разрешение ухудшится всего лишь в 1,6 раза.

ПРИМЕНЕНИЕ ВОО-КРИСТАЛЛОВ В ЯДЕРНОЙ ФИЗИКЕ

Детекторы BGO можно использовать вместо детекторов NaJ(T1) со значительными преимуществами там, где необходимо иметь кристаллы небольших размеров и высокую эффективность регистрации гамма-квантов или производить регистрацию потоков гамма-кван~ тов с большими загрузками, а также там, где необходимо обеспечить небольшую чувствительность к регистрации нейтронов и уменьшение фона /например, от космического излучения/.

В последнее время в исследованиях структуры ядра все шире применяются антикомптоновские спектрометры. На рис.8 показаны результаты расчетов ^{/13/} методом Монте-Карло распределений интенсивностей регистрируемых кристаллом ВGO комптоновски рассеян-

Рис.8. Распределения интенсивностей /контурные линии/, соответствующие долям комптоновски рассеянных в Ge(Li) детекторе гамма-квантов, поглощаемых в кристалле BGO для первичных гамма-квантов с энергией 1,5 МэВ /слева/ и 3 МэВ /справа/.

ных гамма-хвантов в Ge(Li)-детекторе /диаметром 50 мм, высотой 60 мм/. Аналогичные расчеты проведены и для NaJ(T1)-кристалла $^{/3/}$. На основе этих расчетов были определены факторы подавления комптоновского спектра для кристаллов BGO и NaJ(T1), показанные на рис.9.

Рис.9. Зависимость фактора подавления (К) комптоновски рассеянных гамма-квантов от размеров ВСО /сплошные линии/ и NaJ /пунктирные линии/ крнсталлов, применяемых в антикомптоновских слектрометрах.

В рамках проекта OSIRIS ^{/13/} предполагается одновременно использовать 12 антикомптоновских спектрометров / β 125 мм x /20 мм NaJ(T1)+ 125 мм BQQ/, включенных в схему многократных y - y совпадений. Для достаточно хорошего Ge(Li)-детектора /с разрешением $\Delta E_{,} = 1,8$ кэ8, отношение пик/комптон ~40 для гаммаквантов ⁶⁰ Co/ интенсивность пика полного поглощения для $E_{y} =$ = 1 Mэ8 равна 15%, остальные 85% приходятся на комптоновский спектр. Интенсивность у -у -совпадений в пиках полного поглощения составляет примерно 2,3%, остальные 97,7% создают в спектрах непрерывный мешающий фон. Если с помощью антикомптоновского спектрометра удастся понизить интенсивность комптоновского спектра в 10 раз, то интенсивность всего спектра распределится следующим образом: 64% будет принадлежать пику полного поглощения и 36% - непрерывному комптоновскому спектру. Интенсивность спектра Y - Y -совпадений, который измерялся двумя антикомпто-

новскими спектрометрами, состоит из 41% интенсивности пиков полного поглощения и 59% интенсивности комптоновского спектра. Таким образом, получается увеличение отношения эффект/фон в 30 раз.

В работе ^{/18/}предполагается, что антикомптоновские спектрометры будут размещены на расстоянии 13 см от мишени. Применение 12 спектрометров увеличит интенсивность двукратных совпадений в 66 раз. При каскаде, состоящем из 20 гамма-квантов, и при нагрузке 10⁴ имп./с нг одном 'Ge(Li)-детекторе, интенсивность счета двукратных совпадений будет 5000 имп./с, а трехкратных совпадений - 300 имп./с. Это открывает принципиально новые возможности для исследования высокоспиновых ядерных состояний. Так, можно будет анализировать двукратные спектры совпадений, которые совпадают с известным переходом или с гамма-переходами, принадлежащими известной ротационной полосе.

Первый проект использования кристаллов BGO в спектрометре типа CRYSTAL BALL был предложен в работе $^{/14/}$. Предполагается использовать 38 кристаллов BGO, что по сравнению с NaJ(T1)-детекторами принесет ряд преимуществ: меньше размер кристаллов, больше чем на порядок понижение интенсивности регистрации комптоновски рассеянных гамма-квантов соседними кристаллами и почти на два порядка понижение эффективности регистрации нейтронов. В работе $^{/13/}$ описан аналогичный спектрометр, в котором расстояние от кристалла BGO до мишени будет 10 см. Кристаллы BGO

Рис.10. Схематический вид верхней части экспериментальной установки, описанной в проекте OSIRIS /13/. АКС /2+3+4/ - антикомптоновские спектрометры /2х6 штук/ для регистрации многократных гамма-гамма совпадений: 1 - фильтр множественности и спектрометр полного поглощения гаммаквантов, созданный на основе ВСО кристаллов /2x19 штук/; 2 - ВСО кристалл диаметром 125 мм, высотой 125 мм; 3 - NaJ(T1) -кристалл диаметром 125 мм, высотой 20 мм для регистрации мягких гамма-квантов, рассеянных назад; 4 - Ge(Li) детектор с рабочим объемом 90 см³.

будут иметь форму гексагональной призмы /со стороной основания 38 мм, высотой 20 мм/. Планируется достичь разрешения 20% в определении суммарной энергии гамма-каскада. Общий вид верхней части спектрометра OSIRIS^{/13/} показан на рис.10.

Имеются и другие сообщения о подготовке аналогичных проектов экспериментальных установок с использованием ВСО -кристаллов.

О ПРИМЕНЕНИИ ВСО-СЦИНТИЛЛЯТОРОВ

В ЭКСПЕРИМЕНТАХ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ

Совокупность характеристик BGO -кристаллов /см. таблицу/ обусловила широкие возможности их успешного внедрения в эксперименты при высоких энергиях. В последние годы использование BGO -сцинтилляторов рассматривается как предпочтительное в калориметрах, подготавливаемых для исследований на встречных электрон-позитронных пучках, так как эти сцинтилляторы позволяют достичь рекордных энергетического и углового разрешений и большей компактности экспериментальных установок.

В качестве примеров отметим проекты многоцелевых калориметров, создаваемых для экспериментов на встречных электрон-позитронных пучках CESR II /Корнельский университет, США/, LEP /ЦЕРН, Женева/ и SLC /Стенфорд, США/ $^{4,5,15-17}$. В этих проектах окружение центрального трекового детектора содержит большое количество сцинтилляторов BGO, имеющих толщину не менее 20 радиационных длин.

Для экспериментов на пучках CESR II планируется создание высокоэффективного гамма-калориметра на основе 1000 сцинтилляторов BGO, которые распределены на три радиально расположенных слоя ^{/5,15/}.

В одном из шести крупномасштабных экспериментов, предложенных для включения в число первоочередных на встречных электронпозитронных пучках LEP при энергиях 100-250 ГэВ, планируется создание системы идентификации электронов, гамма-квантов и мюонов с разрешением по импульсу около 1% при 50 ГэВ/с^{/5,16/}. На рис.11 показан фрагмент схемы установки для исследований на встречных электрон-позитронных пучках LEP /ЦЕРН/, в состав которой входит электромагнитный калориметр, включающий около 12000 кристаллов BGO. Суммарный объем этих сцинтилляторов составит 1300-1400 литров. Необходимо отметить, что замена BGO -кристаллов на NaJ(T1) привела бы к увеличению объема калориметра по крайней мере в 8 раз. Это, в свою очередь, обусловит увеличение размеров адронного калориметра и значительное удорожание всей экспериментальной установки ^{/16/}.

В работах $^{/4,17/}$ приведена схема эксперимента на встречных е⁺е⁻ пучках SLC с энергией 100 ГэВ, в котором геометрия размещения гамма-калориметра из 10000 сцинтилляторов BGQ с размерами /22,4x2,4x2,4 см³/ аналогична показанной на рис.11.

Рис.11. Фрагмент схемы установки для экспериментов на встречных е⁺ е⁻ пучках LEP /ЦЕРН/ с электромалчитным калориметром типа CRYSTAL BALL /~12000 сцинтилляторов BGO /.

ПРИМЕНЕНИЕ КРИСТАЛЛОВ ВОО В МЕДИЦИНЕ И ГЕОЛОГИИ

В ядерной медицине для исследования функций разных органов человека, в том числе и для идентификации опухолей, применяются эмиссионные и позитронные томографы. Метод позитронной томографии основан на регистрации совпадений двух аннигиляционных гамма-квантов системой, состоящей из ряда детекторов. Разрешающая способность в определении места и размеров опухолей, с одной стороны, зависит от величины применяемых для регистрации излучения сцинтияляционных кристаллов. С другой стороны, интенсивность излучения, регистрируемого детектором, определяется интенсивностью радиоактивного источника. вводимого внутрь организма. В работе /18/ проведено сравнение свойств разных типов сцинтилляторов: Naj(T1), CaF₂(Eu), Csj(T1), CdWO₄, CaWO₄, BaFCl(Eu для позитронной томографии. Оказалось, что наилучи Bi₄Ge₂O₁₂ шими физическими характеристиками обладают кристалыы BGO, которые были использованы как регистрирующие элементы в разных системах томографов /19-21/ Предполагается, что благодаря сцинтилляторам ВСО будет достигнуто пространственное разрешение 3-4 мм, что в 3-4 раза лучше, чем при использовании NaJ(T1)кристаллов. При этом интенсивность вводимого в тело пациента радиоактивного источника будет на порядок меньше в случае применения для регистрации излучения ВGO -детекторов.

Примеры успешного использования сцинтилляторов BGO при поиске полезных ископаемых приведены в работе ^{/22/}. Так, залежи урановой руды можно обнаружить при регистрации в скважинах гамма-излучения с энергией 1760 кэВ, возникающего при распаде ²¹⁴ Ві. Аналогично содержание тория в породах определяется по гамина-излучению с энергией 2620 кэВ /распад ²⁰⁸ T1/. Эффективность регистрации этих гамма-квантов детектором BGO в 5,2 и 6,4 раза больше, чем детектором NaJ(T1) тех же размеров /диаметр 38 мм, высота 38 мм/. Кроме того, при регистрации гаммаизлучения кристаллами <u>BGO</u> существенно подавлен непрерывный комптоновский спектр. Таким образом, удается значительно повысить чувствительность рассматриваемого метода поиска полезных ископаемых или уменьшить время, необходимое для регистрации излучения, или же использовать геологические скважины с меньшим диаметром.

ЗАКЛЮЧЕНИЕ

Отметим еще два интересных примера использования кристаллов BGO: для изучения астрофизических проблем и для синтеза и поиска сверхтяжелых элементов.

1. Имеется сообщение ^{/23/} об услешном применении ВСО -сцинтилляторов в детектирующей системе с уникальной геометрией для получения данных о гамма-излучении, связанном с солнечными вспышками; эта система размещалась в алпарате для исследования космического пространства.

2. В программе экспериментов по синтезу и поиску сверхтяжелых элементов, осуществляемой в Лаборатории ядерных реакций ОИЯИ с помощью установки /24/ для исследования редких событий спонтанного деления ядер, планируется в очередной серии опытов использовать ВGO-детекторы.

Приведенные выше примеры убедительно иллюстрируют разнообразные возможности эффективного применения кристаллов BGO как при проведении фундаментальных исследований в ядерной физике /от низких до высоких энергий/, так и при решении задач в медицине, геологии и других областях науки и техники.

В Институте физики Чехословацкой академии наук изготовлены и исследованы лабораторные образцы ВСО -кристаллов /диаметром 11 мм, высотой 20 мм/; значения основных характеристик этих детекторов сравнимы или близки к величинам, приведенным в таблице.

В заключение авторы выражают искреннюю благодарность участникам Рабочего совещания по подготовке экспериментальных установок и программы исследований на изохронном циклотроне У-400 Лаборатории ядерных реакций ОИЯИ /октябрь 1982 г. Дрезден, ГДР/ и научно-методического семинара Отдела ядерной спектроскопии и радиохимии Лаборатории ядерных проблем ОИЯИ /апрель 1983 г. Дубна/ за обсуждение настоящей работы. Авторы признательны К.Я.Громову, Ю.Ц.Оганесяну и Г.Лизурею за внимание и поддержку. ЛИТЕРАТУРА

1.	Kobayashi M. et al. Nucl.Instr. and Meth., 1981, 189, n.629.
2.	Weber M.J. et al. J.Appl.Phys., 1973, 44, p.5495.
3.	Информационные материалы фирм Харшоу (Harshow) и Хитачи
	(Hitachi), Япония, Байкрон (Bicron), CША; CERN Courier,
	1982, 22, p.343.
4.	Cavalli-Sforza M. et al. SLAC-Report 250, 1982, p.216.
5.	Blanar G. et al. MPI-PAE/Exp. E1.94, Munchen, Sept. 1981.
6.	Evans E.A., jr. IEEE Transactions on Nucl.Sci., 1980,
-	NS-27, p.172.
<i>/</i> ·	Pavlopoulos P. et al. Nucl. Instr. Meth., 1982, 197, p.331.
0. a	Bol A at al Nuclinstrimetri, 1901, 100, p.313.
10	Moszinski M et al. Nucl Instr Meth. 1981 188 n_1403 .
11.	Wender S.A. et al. Nucl.Instr. Meth., 1982, 197, p.591.
12.	Piltingsrud H.V. et al. J.Nucl.Med., 1979, 20, p.1279.
13.	Lieder R.M. Project OSIRIS, 1982, KFA, Julich.
14.	Sharpey-Schafer J.F. Proc. of 5th Int. School about Atomic
	Nuclei and Neutron Physics, 1981, Varna.
15.	Franzini P. et al. Columbia University, SUNY at Stony
	Brook collaboration: A Detector for CESR II, presented
	at the 1. Workshop for Detectors and Experiments for ete
	at IUU GeV; Lornell University, Nov.14-16, 1960, updated
14	3. WORKSHOP APTI ()-5, 1901. Blange C. et al. May-Blanck-Institut Munich, A Design Study
10.	for a Compact LEP Detector presented at the 2 Workshop
	for Detectors and Experiments for e ⁺ e ⁻ at 100 GeV. Cornell
	University, Jan.9-11, 1981; and at the 1 LEP-HERA Seminar.
	Max-Planck-Institut Munich, Sept.2, 1980.
17.	Cavalli-Sforza M., Coyne O.G. SLC Workshop, note 34,
	Aug.1981.
18.	Farukhi M.R. Technical Paper Harshaw, TP 16 REV A 0679.
19.	Cho Z.H. et al. J.Nucl.Med., 1977, 18, p.840.
20.	Cho Z.H. et al. Technical Paper Harshaw, TP 080 178.
21.	Murayama H. Nucl.Instr.Meth., 1982, 192, p.501.
22.	LONAWAY J.G. ET AL. HARSNAW, PROJECT /4 UU 05. Augl Laste Math. 1982 202 - 295
25.	Muchanistraneth, 1902, 202, p_1 , 395. Some Akonish C. M. et al. Muchantz Mother 1981, 199 - 119.
24.	rer-Akopian u.n. et al. Nucrinistrimethi, 1901, 190, pilly;

Сокол Е.А. и др. ОИЯИ, 13-83-227, Дубна, 1983.

Рукопись поступила в издательский отдел 28 октября 1983 года. A CONTRACT OF A DESCRIPTION OF A A DESCRIPTION OF A DESCR