

Объединенный институт ядерных исследований дубна

260/84

13-83-707

1983

Л.И.Абашидзе, В.В.Авдейчиков¹, А.И.Богданов['], В.А.Будилов, Ю.Зломанчук², Н.К.Жидков, В.Д.Майсюков³, В.А.Никитин, П.В.Номоконов, А.А.Повторейко

ПОПРАВКИ НА ЯДЕРНОЕ ВЗАИМОДЕЙСТВИЕ ПРИ РЕГИСТРАЦИИ ЛЕГКИХ ЯДЕР КРИСТАЛЛОМ Nal

Направлено в журнал "Приборы и техника эксперимента"

¹ Радиевый институт им. В.Г.Хлопина, Ленинград.

² Институт экспериментальной физики Варшавского университета.

³ Союзный НИИ приборостроения, Москва.

1. ВВЕДЕНИЕ

Для идентификации легких ядер и измерения их энергии в интервале 10÷200 МэВ/нуклон удобным прибором является телескоп из ΔE -E-детекторов, в качестве которых используются, соответственно, кремниевый полупроводниковый детектор и сцинтилляционный кристалл NaI(T1)толщиной до 100 мм. Доля частиц, испытавших неупругое ядерное взаимодействие в кристалле NaI,может достигать 30% и более, и в точных экспериментах ее следует учитывать. В литературе отсутствуют сведения для таких поправок, за исключением данных для протонов /1,2/.

В настоящей работе приведены экспериментальные результаты измерения потерь на ядерное взаимодействие в кристалле NaI для изотопа гелий-3 в диапазоне энергий 70÷430 МэВ и сделан теоретический расчет ядерных потерь для изотопов водорода и гелия.

2. КОНСТРУКЦИЯ ТЕЛЕСКОПА

Телескоп /рис.1/ состоит из кремниевого полупроводникового ΔE -детектора толщиной 1,8 мм и сцинтиллятора NaI(T1) толщиной 70 мм и диаметром 30 мм. Кремниевый детектор имеет центральную рабочую зону диаметром 15 мм и охранное кольцо шириной 2,5 мм. Кольцо уменьшает неоднородность электрического поля на краях рабочей зоны и позволяет точно задавать ее площадь. С центральной зоны и с охранного кольца /между которыми имеется зазор 0,5 мм/ сигналы снимаются независимо, что позволяет проверить краевые эффекты для телескопа.

Рис.1. Телескоп, сконструированный из кремениевого ΔΕ – детектора и Nal-счетчика.

Энергетическая калибровка кремниевого детектора выполняется с помощью а-источника с энергией 5,485 МэВ, помещенного со стороны обратного контакта.

Сцинтиллятор NaI(T1)оптически соединен с фотоумножителем ФЭУ-85 через световод из оргстекла длиной 15 мм, изготовленный в виде усеченного конуса. Используется стандартный промышленный сцинтиллятор, в корпусе которого мы заменили входное окно на более тонкое. Оно имеет толщину 0,06 г/см².

Счетчик NaI испытан с помощью у-источника Cs¹³⁷, дающего монохроматическую линию 660 кэВ. Разрешение счетчика составляет 10%. Среднее значение амплитуды и дисперсия не зависят от места облучения кристалла.

Для уменьшения нелинейности и зависимости усиления фотоумножителя от загрузок сигнал снимается с шестого динода^{/3/} и усиливается зарядочувствительным предусилителем. Все остальные диноды и анод находятся под напряжением - 20 В относительно шестого динода.

В измерениях используется электроника спектрометра ядер отдачи Лаборатории высоких энергий^{/4/} на линии с ЭВМ СМ-3. В каждом событии, регистрируемом телескопом, записываются амплитуды трех сигналов: с центральной зоны кремниевого детектора, его охранного кольца и счетчика NaI.

3. ПОСТАНОВКА ЭКСПЕРИМЕНТА

Работа проведена на пучке медленного вывода синхрофазотрона ОИЯИ. Ускоренные ядра ³Не выводятся при значении магнитного поля ускорителя 1 кГс и имеют энергию 464 МэВ. На пути пучка частиц постоянно находится слой вещества толщиной 2 г/см²,что снижает энергию до 438 МэВ. Измерения сделаны при пяти значениях энергии ³Не на входе в кристалл NaI:428; 387; 295; 172 и 70 МэВ. Энергия задается набором медных поглотителей и определяется двумя независимыми способами: расчетным путем по ионизационным потерям в меди и в кремнии ^{/5/} и по измеренной величине ΛE -потерь в кремниевом детекторе. Результаты совпадают с точностью 1%.

Рис.2. Зависимость амплитуды сигнала NaI-счетчика от энергии ядер гелия-3. На рис.2 показана зависимость амплитуды сигнала NaI-счетчика от энергии ядер ³Не и ее аппроксимация квадратичной функцией. Отклонение характеристики счетчика от линейной зависимости не превышает 5%.

На рис.3 приведено двухмерное распределение амплитуд сигналов ΔЕ-детектора и NaI-счетчика для случая, когда перед телескопом стоит медная пластина толщиной 9 мм, понижающая энергию ядер на входе в кристалл до 295 МэВ. Пятно с большой плотностью событий соответствует полному иони-

Рис.3. Двухмерное распределение амплитуд сигналов ΔE -детектора и NaI-счетчика. Пучок гелия-3 перед телескопом замедляется медной пластиной толщиной 9 мм. Δn_{Si} – ширина полосы, в которой отбираются события для построения одномерного амплитудного спектра счетчика NaI /см. рис.4/.

Рис.4. Распределение амплитуд сигналов Nal-счетчика для ядер гелия-3 с энергией 428 МэВ на входе в кристалл Nal. 3

зационному торможению ядер ³He. События в горизонтальной полосе слева с шириной $\Delta n_{Si} = 25$ каналов связаны с неупругим ядерным взаимодействием в NaI. Полоса сверху образуется событиями, в которых ядра ³He потеряли часть энергии в неупругих взаимодействиях в медном замедлителе.В ниж-

нем левом углу группируются события от изотопов водорода. Для дальнейшего анализа из двумерного распределения отбираются события, лежащие в горизонтальной полосе Δn_{Si} , и по ним строится одномерный амплитудный спектр NaI-счетчика. Такие спектры получены для всех пяти энергий пучка. Один из них при энергии ³Не 428 МэВ показан на рис.4. Основной пик имеет ширину на полувысоте 3,3%.

4. ВЫЧИСЛЕНИЕ ПОПРАВОК НА ЯДЕРНОЕ ВЗАИМОДЕЙСТВИЕ ³Не по амплитудным спектрам счетчика Nai

Амплитудный спектр сигналов NaI-счетчика можно разложить на две компоненты: $\phi(W, E) = \phi_1(W, E) + \phi_2(W, E)$. Здесь Е – средняя энергия частиц на входе в кристалл, W – энергия, потерянная частицами на ионизацию. Функция ϕ_1 описывает основной пик, в который попали частицы, потерявшие всю энергию на ионизацию: $\phi_1 = c_1 \cdot \exp(-t^2/2); \quad t = (W - E) / \sigma$.

Функция ϕ_2 задает распределение частиц, испытавших неупругое ядерное взаимодействие и попавших в "хвост" амплитудного распределения в области W < E. Как видно из рис.4, функция ϕ_2 (W,E) слабо меняется в области слева от пика W < E. Поэтому в окрестности главного пика и под самим пиком (W \approx E) ее можно записать

в виде:
$$\phi_2 = c_2(\frac{1}{2} - F(t)); c_2 = \phi(W, E)|_{W = E-5\sigma}; F(t) = \frac{1}{\sqrt{2\pi}} \int_0^t \frac{x^2}{e^2} dx$$

Основная часть частиц N₂ с неполной потерей энергии на ионизацию вычисляется суммированием экспериментального распределения в пределах $0 \le W \le E - 5\sigma$. Оставшаяся часть N₂' получается интегрированием функции ϕ_2 :

$$W_{max.}$$

$$N_{2}^{\prime}(W_{max.}, E) = \int \psi_{2}^{\prime}(W, E) dW.$$

$$E - 5\sigma$$
(1/

Искомая величина f - поправка на неупругое ядерное взаимодействие /или, точнее, - на выбывание частиц из основного пика/ есть $f(W_{max}) = (N_2 + N_2') / N_0$, где N_0 - полное число частиц в спектре $N_0 = \int_0^0 \phi(W,E) dW$. Верхний предел интегрирования W_{max} . в формуле /1/ следует выбирать с учетом аппаратурного разрешения, формы энергетического спектра регистрируемых частиц и других конкретных условий эксперимента. Предельное /максимальное/ значение поправки $f = f(\infty) \equiv f(W_{max}) |_{W_{max}} \to \infty$ мы приводим в табл.1 и на рис.5. Зависимость поправки от W_{max} . Дана в табл.2.

На рис.5 при E = 406 МэВ стрелкой отмечено значение f для случая, когда вместо центральной /рабочей/ зоны кремниевого детектора используется охранное кольцо. Из этих данных следует, что место прохождения частиц через рабочую часть телескопа не сказывается на результате измерений величины f в пределах 5%ошибки. Это, в частности, показывает, что частицы пучка не покидают кристалл из-за многократного кулоновского рассеяния в нем. Рис.5. Поправки на ядерные потери /вероятности неупругого ядерного взаимодействия/ изотопов водорода и гелия в кристалле NaI. Приведены данные для ³Не,полученные экспериментально в настоящей работе. Остальные кривые – результат расчета /см. табл.3/. Стрелкой указано значение f (³Не),полученное при отборе событий с охранного кольца Si -детектора.

Е /МэВ/	ſ
73	0,009+0,02
173	0,058 <u>+</u> 0,004
295	0,126+0,005
387	0,191+0,007
428	0,207 <u>+</u> 0,005

Таблица 2

Е - W_{max.} МэВ			f(W _{max.})/	[
			Е /МэВ/		
	429	387	294	172	70
0	0,99	0,98	0,97	0,95	0,95
12	0,96	0,92	0,86	0,76	0,79
18	0,94	0,88	0,80	0,63	0,67
24	0,91	0,84	0,73	0,51	0,56
30	0,89	0,79	0,65	0,37	0,44

Зависимость поправки f от предела интегрирования W_{max.} в формуле /1/ для различных энергий Е пучка ³He.

5. ТЕОРЕТИЧЕСКИЙ РАСЧЕТ ПОПРАВОК НА ЯДЕРНОЕ ВЗАИМОДЕЙСТВИЕ

В настоящем разделе поправка f вычисляется теоретически для ядер 1,2,3 H , 3,4 He .

В слое вещества толщиной dx поток частиц N испытывает dN неупругих ядерных взаимодействий $dN = -Nn\sigma_{in} dx = Nn\sigma_{in} \frac{dE}{(-dE/dx)}$. Здесь n – число ядер в единице объема вещества, σ_{in} – сечение неупругого ядерного взаимодействия, $J(E) \equiv -\frac{dE}{dx}$ – плотность ионизационных потерь. Из этого соотношения следует формула для

ионизационных потерь. Из этого соотношения следует формула для вероятности ядерного взаимодействия в конечном слое, в котором частица теряет на ионизацию в среднем энергию E-E1:

$$f = \frac{\Delta N}{N} = 1 - \exp\left(-n \int_{E_{1}}^{E} \sigma_{in} \frac{dE}{J}\right).$$
 /2/

Таким образом, для получения искомой величины f нужно знать функции $\sigma_{in}(E)$ и J(E).В литературе имеются достаточно полные сведения о взаимодействии протонов с различными ядрами. По другим легким нуклидам опубликованные данные скудны и недостаточны для решения нашей задачи. Поэтому мы вычислили функцию σ_{in} по модели Глаубера /6/ в оптическом приближении. Исходным материалом для этого расчета служат известные из эксперимента полные сечения взаимодействия протонов с протонами и нейтронами /7/ и формфакторы ядер /распределение нуклонов в ядрах/^{/6,8/}. В расчетах учитывается кулоновский барьер между сталкивающимися ядрами, который приводит к занулению сечения в области ниже некоторой энергии Е₁ /9/Эта энергия служит пределом интегрирования в формуле /2/. Полученная нами функция σ_{in} приведена в табл.3. Ионизационные потери J(E) вычисляются методом, описанным в работах^{/5/}. Поправка на ядерное взаимодействие f, вычисленная по формуле /2/, приведена в табл.4. Она совпадает с экспериментальными данными для протонов /2/ в пределах ~4%. Расчетные данные для ³Не ниже экспериментальных данных, полученных в настоящей работе, на 20%. Это, вероятно, связано с неточностью формфактора ³Не.который использован в расчетах.

Мы сделали еще одну оценку величины f, основываясь на данных работы $^{/10/}$ где приведено несколько значений сечения изотопов водорода и гелия на различных ядрах в интересующем нас диапазоне энергий.Интерполируя зависимость сечений от атомного номера, получаем оценку сечений на ядрах натрия и йода /табл.5/. Полагая, что энергетическая зависимость $\sigma_{in}(E)$ для легких нуклидов при равной энергии на нуклон такая же, как для протонов $^{/2/}$, вычисляем вероятность f ядерных взаимодействий в кристалле NaI. Результаты приведены в табл.6. Для ядер 3 Не рассчитанные таким образом величины f на 20% больше экспериментальных значений, полученных в настоящей работе. Это различие может возникнуть Таблица З

Сечение неупругого ядерного взаимодействия легких ядер с Nal. полученное по модели Глаубера

(MəB) -	6 in , 140					
	P	d	t	3 _{He}	⁴ He	
20	1790	34 60	3200	I823	I885	
30	193 0	374I	3482	2604	267I	
4 0	1927	3773	3567	293I	2994	
60	I89I	3676	3539	3I4 0	3239	
8 0	I8 09	3496	3462	3175	3285	
100	I738	3372	3353	3I34	3281	
150	I639	3106	3144	3009	316 0	
200	I57 0	2896	2998	2902	3059	
250	I528	2774	2865	279I	2978	
300	1512	2677	2768	2709	2891	
400	I54I	2549	2652	2609	2756	
500	I652	2472	2565	2532	268 0	

Таблица 4

Поправка на неупругое взаимодействие легких ядер с Nal, вычисленная с помощью сечений из таблицы 3

E	- F				
(MəB)	P	d	t	³ Не	⁴ He
20	0.004	0.004	0.002	0.000	0.000
30	0,010	0,011	0.007	0,001	0.001
4 0	0,018	0,021	0,014	0,002	0,002
60	0,039	0,045	0,030	0,006	0,005
8 0	0,063	0,073	0,051	0,011	0,009
100	0,0 91	0,105	0,075	0,017	0,014
150	0,168	0,195	0,144	0,035	0,029
200	0,252	0,289	0,222	0,057	0,047
250	0 ,33 6	0,383	0,302	0,081	0,069
3 00	0,418	0,472	0 ,381	0,108	0,092
400	0,569	0,628	0 ,53 0	0,166	0,143
500	0,696	0,748	0,656	0,228	0,199

Сечение неупругого взаимодействия дейтерия, ³Не, ⁴Не с NaI, полученное интерполяцией данных работы /11/. Ошибка величин ^σin составляет ~15%

Изотоп	Е, МэВ	σ _{in} (Na), мб	σ _{in} (I), мб
d	160	922	2592
³ He	315	896	2852
⁴ He	240	97 9	2893

Таблица 6

Поправка на неупругое ядерное взаимодействие легких ядер с NaI, вычисленная на основании экспериментальных сечений /см.текст/

Е /МэВ/	t				
	р	d	t	³ Нө	⁴ He
25	0,007	0,002	0,000	0,000	0,000
50	0,029	0,027	0,013	0,003	0,001
75	0,059	0,066	0,045	0,011	0,006
100	0,093	0,111	0,085	0,022	0,014
150	0,171	0,212	0,177	0,048	0,034
200	0,257	0,318	0,278	0,078	0,059
250	0,345	0,423	0,377	0,112	0,086
300		0,522	0,472	0,148	0,116
350		0,611	0,560	0,186	0,147
400		0,689	0,639	0,225	0,179
450		0,756	0,708	0,265	0,213
500		0,810	0,767	0,306	0,247

из-за погрешности данных работы $^{/11/}$ и неточности предположения о подобии функций σ_{in} (E) для протонов и ядер.

6. ЗАКЛЮЧЕНИЕ

В настоящей работе измерены и теоретически вычислены поправки на ядерные потери изотопов водорода и гелия в кристалле Nal. Приведены таблицы сечений σ_{in} и поправок f, удобные в практике обработки экспериментальных данных. Метод расчета применим для любых пучков и счетчиков и при любой энергии.

ЛИТЕРАТУРА

- Measday D.F., Richard-Serre C. Nucl.Instr. and Meth., 1969, 76, p.45.
- Goulding C.A., Rogers J.G. Nucl.Instr. and Meth., 1978, 153, p.511.
- 3. Cohn C.E. IEEE, 1974, NS=21, No.1, p.146.
- 4. Абашидзе Л.И. и др. ОИЯИ, 1-83-185, Дубна, 1983.
- 5. Barkas W.H., Berger M.J. Nat.Acad.Sci.-Nat. Res.Council Publication 1133, Nucl.Sci.Ser., Report No.39, 1964; Стародубцев С.В., Ромаков А.М. Прохождение заряженных частиц через вещество. Изд-во АН УзССР, Ташкент, 1962; Northcliffe L.C., Schilling R.F. Nucl.Data Tables, 1970, vol.A7, p.233; Ziegler 1.F. Nucl.Instr.Meth., 1980, 168, p.17.
- 6. Barshay S. et al. Phys.Rev., 1975, C11, p.360; Барашенков В.С., Тонеев В.Д. Взаимодействия высокоэнергетических частиц и атомных ядер с ядрами. Атомиздат, М., 1972; Franco V., Glauber R.J. Phys.Rev., 1966, 142, p.1195; Czyz W., Maximon L.C. Ann.Phys., 1969, 52, p.59.
- 7. Барашенков В.С. Сечения взаимодействия элементарных частиц. "Наука", М., 1966.
- 8. Элтон Л. Размеры ядер. ИИЛ, М., 1962; Sick I. et al. Phys.Lett., 1976, B64, p.33.
- 9. Vas L.C. et al. Phys.Rev., 1974, C11, p.464.
- 10. Millburn G.P. et al. Phys.Rev., 1954, 95, p.1268.

Рукопись поступила в издательский отдел 13 октября 1983 года.

Абашидзе Л.И. и др. Поправки на ядерное взаимодействие при регистрации легких ядер кристаллом NaI

Приводятся экспериментальные результаты измерения потерь на ядерное взаимодействие в кристалле NaI для изотопа ³Не в диапазоне энергий 70÷430 МэВ. Эксперимент выполнен с помощью Si – NaI(Tl) – телескопа на выведенном пучке синхрофазотрона ОИЯИ. Сделан теоретический расчет ядерных потерь для изотопов водорода и гелия. Результаты сведены в таблицы, удобные в практике обработки экспериментальных данных.

13-83-707

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института вдерных исследований. Дубна 1983.

Abashidze L.I. et al. 13-83-707 Corrections to Nuclear Interaction at Registration of Light Particles by a Crystal NaI

Reaction losses of ³He in NaI have been measured in the 70-430 MeV energy region. The measurements were performed using JINR synchrophasotron ³He-beam and Si-Na(T1) telescope. Results of theoretical calculations of reactions losses for hydrogen and helium isotopes in NaI are also presented.

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1983

Перевод О.С.Виноградовой.