

1492

13-83-4

О.П.Гаврищук, Л.С.Золин, В.В.Стекольщиков

ГАЗОВЫЙ ПОРОГОВЫЙ ЧЕРЕНКОВСКИЙ СЧЕТЧИК В УСЛОВИЯХ ОГРАНИЧЕННОЙ ГЕОМЕТРИИ

В реальных условиях проведения ряда экспериментов существуют определенные ограничения на конструкцию и размеры экспериментального оборудования. К спектрометру ^{/1}, работающему вблизи мишени протонного синхротрона, были предъявлены жесткие требования на компактность размещения детекторов вдоль оси спектрометра. Это обусловило необходимость разработки конструкции газового порогового счетчика, допускающей его размещение в зазоре анализирующего магнита при обеспечении рабочей апертуры счетчика, максимально приближенной к апертуре магнита.

ОПИСАНИЕ КОНСТРУКЦИИ ПОРОГОВОГО СЧЕТЧИКА

Конструкция счетчика и его размещение в зазоре анализирующего магнита показаны на рис.1. Сечение сосуда /2/ счетчика имеет овальную форму с плотным прилеганием плоской части к полюсам магнита /1/, которые используются также в качестве опорного элемента, предотвращающего деформацию плоской части стенок сосуда счетчика при его работе под давлением. Корпус счетчика, входное и выходное окна /0,6 мм/ выполнены из нержавеющей стали на сварных соединениях и рассчитаны на номинальное рабочее давление 10 атм, что обеспечивает регистрацию *т*-мезонов с импульсом свыше 1,2 ГэВ/с при использовании газов с высоким коэффициентом рефракции /элегаз, фреон-13/.

Рис.1. Конструкция газового порогового счетчика.

BUB/ANDERA

¹

Рис.2. Зависимость светосбора от радиуса кривизны сферического зеркала /расчет/.

Рис.3. Спектральные характеристики оптических элементов счетчика. п – квантовый выход фотокатода;
N – коэффициент пропускания азота^{/4/} /слой 1 м при нормальных
условиях/; К – коэффициент пропускания кварцевого стекла /кварц КУ-1^{/4/} толщиной 24 мм/;
М – коэффициент отражения зеркала /алюминий на стекле/; R – коэффициент пропускания оптической смазки.

в счетчике используется фотоумножитель ХР-2041/0 /2/ /диаметр фотокатода 110 мм/, очень чувствительный к наличию внешних магнитных полей. Это определило необходимость, помимо использования многослойного магнитного экрана из отожженного пермаллоя вокруг ФЭУ, расположить ФЭУ на достаточно большом расстоянии от оси счетчика /на патрубке длиной ~0,4 м/. Для обеспечения оптимального светосбора в этих условиях была выбрана двухзеркальная оптика: сферическое фокусирующее зеркало /6/, выполненное из полированного плексигласа /0,4 г/см²/ с алюминиевым напылением, и плоское поворотное зеркало /7/ /алюминиевое напыление на стеклянной подложке 0,4 г/см²/, установленное под углом 45° к оси счетчика. В патрубке ФЗУ между плоским зеркалом и кварцевым окном /4/ установлен конический отражатель /5/ из алюминизированного майлара. Оптимальный радиус кривизны фокусирующего зеркала был определен путем расчета коэффициента светосбора /рис.2/ черенковского излучения для пучка с угловым расхождением $\Delta \theta_{\star}$ = = $\pm 1, 2^{\circ}$ и $\Delta \theta_{v} = \pm 2, 5^{\circ}$. Расчет был выполнен с помощью программы/3/ симулирующей регистрацию частиц черенковским счетчиком с заданной геометрией оптической системы. На краевых участках рабочей апертуры неизбежны потери в светосборе, обусловленные ограничениями на размеры корпуса и зеркал /в этой зоне часть конуса черенковского излучения попадает на стенки счетчика/. Для обеспечения высокой эффективности регистрации как в центральной, так и в краевой области апертуры в счетчике использована кварцевая оптика. Спектральные характеристики оптических элементов счетчика приведены на рис.3. Эффективность регистрации черенковского излучения определяется константой А счетчика^{/6/}

$$\mathbf{A} = \frac{2\pi}{137} \int_{\lambda_1}^{\lambda_2} \eta (\lambda) \cdot \mathbf{M}(\lambda) \cdot \mathbf{K}(\lambda) \cdot \mathbf{N}(\lambda) \frac{d\lambda}{\lambda^2}$$

где λ_1 , λ_2 - нижний и верхний пределы интегрирования по длине волны λ . В нашем случае при использовании в качестве радиатора / L = 150 см/ азота под давлением 5 атм. расчетное значение константы счетчика в соответствии с данными рис.3, равно A = = 85 см⁻¹,и разрешение по скорости $\delta\beta = 1/(2A\cdot L) = 3,9\cdot 10^{-5}$.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ ПОРОГОВОГО СЧЕТЧИКА

Исследование характеристик черенковского счетчика было выполнено на пучке положительных частиц ускорителя ИФВЭ /канал №6/ со следующим компонентным составом: $\pi - 65+75$; $p - 20 \div 25\%; \mu + e = 5\div 10\%$. Схема измерений и расположение детекторов на пучке заряженных частиц показаны на рис.4. В качестве рабочего газа счетчика использовался азот. На рис.5 представлена зависимость /пороговая кривая/ эффективности регистрации є заряженных частиц от давления газа D в счетчике при среднем значении импульса частиц 3,23 ГэВ/с и пороге регистрации электроники на уровне 1 фотоэлектрона. Форма пороговой кривой отражает компонентный состав и импульсный разброс пучка / $\Delta p/p = 12\%$, плато регистрации π -мезонов начинается с 4,0 атм.

Для экспериментального определения константы счетчика A было определено среднее число фотоэлектронов \bar{N}_e для *п*-мезонов, проходящих по оси счетчика, по положению центра тяжести амплитудного спектра сигналов. Шкала зарядово-цифрового преобразователя была прокалибрована в числе фотоэлектронов с использованием методики выделения сигналов с одним фотоэлектроном путем ослабления светового импульса от светодиода /см., например,/⁶/. По экспериментально измеренному /рис.6/ значению \bar{N}_e константа счетчика определяется следующим образом:

$$A_{3KC\Pi} = \frac{N_e}{L \cdot T}$$

e

где L – длина радиатора /150 см/; \overline{T} – среднее значение квадрата угла черенковского излучения $T = 2[(n_0 - 1) \cdot D - \frac{m^2}{2P^2}], (n_0 - 1) -$ коэффициент рефракции газа при нормальных условиях /для азота

Рис.4. Схема измерений и расположение детекторов на пучке заряженных частиц. S_A, S₁ \div S₄ – сцинтилляционные счетчики; C_e – пороговый черенковский счетчик для выделения электронов; C₀исследуемый счетчик; AT₁, AT₂ – аттенюаторы; CC₁, CC₂ – схемы совпадений; ГИ – генератор импульсов; ЗЩП – зарядово-цифровой преобразователь; КР – входной регистр; КК – контроллер.

Рис.6.Амплитудные спектры сигналов счетчика. 1 – позитроны с импульсом 3,23 ГэВ/с /азот D = = 1 атм/; 2 – π -мезоны с импульсом 3,23 ГэВ/с /азот D = 5 атм/; 3 – спектр сигналов от светоднода АЛ102Б (N_e = 12).

 $n_0 - 1 = 2,824 \cdot 10^{-4}$ /7/, D - давление газа /5 атм/, m. - масса частицы (m = m_π), P₀ - значение импульса частицы / P₀ = 3,23 ГэВ/с/. В данном опыте $\overline{N}_e = 10$ и при указанных значениях других параметров константа счетчика и разрешение по скорости соответственно равны A_{3KCI} . = 70,6 см⁻¹, $\delta\beta$ = 4,7.10⁻⁵. Несколько меньшая вели-

чина А_{Эксп.} по сравнению с рассчитанной может быть объяснена отличием средней по площади фотокатода квантовой эффективности фЭУ от паспортного значения /значение квантовой эффективности в различных точках зависит от режима делителя ФЭУ, который в нашем случае был подобран из условия обеспечения равномерности квантовой эффективности по всей рабочей области фотокатода/. На рис.6 /3/ показан амплитудный спектр сигналов позитронов при давлении в счетчике D = 1 атм. Среднее число фотоэлектронов $\bar{N}_e = 6$,что обеспечивает регистрацию электронов с хорошей эффективностью.

Для исследования эффективности регистрации в пределах рабочей апертуры черенковский счетчик передвигался на координатном устройстве относительно пучка частиц размером 20х24 мм /по X и Y соответственно, см. рис.1/, выделяемого системой сцинтилляционных счетчиков, включенных на совпадения. Результаты измерений представлены на рис.7. Апертурные характеристики были исследованы как для расходящегося пучка /рис.7б/, на который была оптимизирована оптика счетчика / $\Delta \theta_x = \pm 1, 2^\circ$; $\Delta \theta_y = \pm 2, 5^\circ$ /, так и для случая с параллельным пучком /рис.7в/. Помимо этого, была проведена дополнительная серия измерений с целью выяснения возможности улучшения светосбора у границ рабочей апертуры с помощью конического отражателя из алюминизированного майлара *, помещенного в корпусе между сферическим и плоским зеркалами /рис.1, поз.8/.Соответствующие результаты представлены на рис.7а.

Для проверки способности счетчика дискриминировать фоновые частицы со скоростью выше пороговой, которые пересекают радиатор под бо́льшими углами, чем пучковые частицы, были проведены измерения эффективности регистрации є при повороте /в плоскости ΨZ / оси счетчика относительно пучка в интервале углов α до 20° · Результаты измерений /рис.8/ показывают, что дискриминирующие свойства счетчика с зачерненными стенками /без отражателя/ существенно выше, чем у счетчика с коническим отражателем. Однако при углах отклонения частиц в магните более 3° отражатель позволяет уменьшить снижение эффективности регистрации пучковых частиц из-за искривления траектории частиц в радиаторе счетчика.

Таким образом, проведенное определение константы A счетчика и исследование его апертурных характеристик показывают, что счетчик описанной конструкции, предусматривающей его размещение в зазоре магнита, обеспечивает эффективность регистрации π -мезонов ϵ_{π} /1 ф.э./ = 99,0% в пределах апертуры, составляющей 75% от полной площади апертуры магнитного зазора /280x140 мм²/. Введение дополнительного отражателя в оптическую систему счетчика существенно не улучшает эффективности регистрации в пределах апертуры счетчика, но снижает его угловую избирательность. При длине радиатора 150 см пороговый счетчик данной конструкции обеспечивает достаточно высокую эффективность регистрации релятивистских электронов. Ее среднее интегральное значение в пределах рабочей апертуры составляет ϵ_{π} /1 ф.э./ = 96,7%.

^{*}Авторы благодарят В.И.Баскакова, Г.Б.Бондаренко и А.М.Константинова за предложение использовать подобный отражатель в нашем эксперименте,полезную дискуссию по этому вопросу и помощь в изготовлении и установке отражателя.

Рис.7. Коэффициент светосбора в пределах рабочей апертуры счетчика. а/ Расходящийся пучок, конический отражатель вдоль стенок счетчика; б/ расходящийся пучок без отражателя; в/ параллельный пучок без отражателя.

Рис.8. Зависимость эффективности регистрации (—) и коэффициента светосбора К /- - -/ от угла падения частиц а, 1 - без отражателя, 2 - с отражателем.

Авторы приносят благодарность Т.С.Григалашвили и М.Н.Шумакову за помощь в организации измерений на линии с ЭВМ, А.В.Рыжову, Ю.А.Ченцову, Ю.А.Иванову за помощь в подготовке и проведении испытаний счетчика на пучке частиц.

ЛИТЕРАТУРА

- 1. Золин Л.С. и др. ОИЯИ, Р -9964, Дубна, 1976.
- 2. Philips Data Handbook, Electron Tubes, part 9, June 1980.
- 3. Masam T. CERN, 76-21, Geneva,
- 4. ГОСТ № 130-69. Изд-во стандартов, М., 1969.
- 5. Garwin E.L., Roder A. NIM, 1971, 93, p.593.
- 6. Зрелов В.П. Излучение Вавилова-Черенкова и его применение в физике высоких энергий. Атомиздат, М., 1968.
- 7. Heintze J. NIM, 1976, 138, p.642.

Рукопись поступила в издательский отдел 5 января 1983 года.

7

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги, если они не были заказаны ранее.

A3-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3	p.	00	к.
A13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6	۰p.	00	к.
	Труды VI Всесоюзного совещания по ускорителян заря- женных частиц. Дубна, 1978 /2 тома/	7	p.	40	к.
д1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубиа, 1978	5	p.	00	к,
Д1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3	p.	00	к.
	Труды VII Всесоюзного совещания по ускорителян заря- женных частиц, Дубна, 1980 /2 тона/	8	p.	00	к.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике, Дубна, 1979	3	p.	50	к.
д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3	р.	00	к.
A4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	p.	00	к.
д2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2	p.	50	к.
A10,11-81-622	Труди Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	р.	50	к.
A1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3	p.	60	к.
A17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5	р.	40	к.
A1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3	p.	20	к.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3	p.	80	к.
Д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1	p.	75	к.
д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3	p.	30	к.
ДЗ,4-82-704	Труды IV Неждународной школы по нейтронной физике. Дубна, 1982.	5	p :	00	к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований Гаврищук О.П., Золин Л.С., Стекольщиков В.В. 13-83-4 Газовый пороговый черенковский счетчик в условиях ограниченной геометрии

Описан газовый пороговый черенковский счетчик, конструкция которого предусматривает его размещение в зазоре анализирующего магнита. Длина радиатора счетчика 150 см, рабочее давление - до 10 атм. Корпус и окна счетчика выполнены из нержавеющей стали. Использована двухзеркальная оптика. Для улучшения спектральной характеристики перед фотоумножителем XP-2041/Q установлено кварцевое окно, применялся прозрачный газ в диапазоне длин волн 180-700 нм. На пучке заряженных частиц измерены константа счетчика A = = 70,6 см²¹, разрешение по скорости β = 4,7·10⁻⁵, зависимость эффективности регистрации - от угла прохождения частицы через радиатор. Коэффициент светосбора на уровне 70% обеспечивается по площади, составляющей 75% от максимальной апертуры магнита, равной 280х140 мм².

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1983

13-83-4

Gavrishchuk O.P., Zolin L.S., Stekolshchikov V.V. A Gaseous Threshold Cherenkov Counter under Bounded Geometry

A gaseous threshold Cherenkov counter is described. The counter is designed to be placed inside a gap of analysing magnet. The length of the counter radiator is 150 cm, the operating pressure - about 10 atm. The body and windows of the counter are made of stainless steel. A two-mirror optics is used. To improve spectral characteristics, a quartz window is placed in front of the XP-2041/Q photomultiplier. A gas, transparent over a range of 180-700 nanometers, is used. On the beam of charged particles the counter constant is measured to be $A=70.6 \text{ cm}^{-1}$, the velocity resolution $\beta = 4.7 \cdot 10^{-5}$ and the dependence of detection efficiency on the angle of passing a particle through the radiator. The factor of light collection at a level of 70% is achieved over the area that is 75% of the 280x140 mm² aperture of the magnet.

The investigation has been performed at the Laboratory of High Energies, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1983

Перевод О.С.Виноградовой.