

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

2/111-82

13-82-254

В.П.Зрелов, В.П.Лупильцев, И.В.Мирохин

ИЗМЕРЕНИЯ ЭНЕРГИИ ВЫВЕДЕННОГО ПРОТОННОГО ПУЧКА (~1 ГЭВ) ОТ УСКОРИТЕЛЯ ЛИЯФ (ГАТЧИНА) ЧЕРЕНКОВСКИМ МЕТОДОМ ДВОЙНЫХ ОТРАЖЕНИЙ

I. ВВЕДЕНИЕ

Простой черенковский метод ^{/1/} /или метод двойных*отражений/ измерения средней энергии был опробован ^{/2/} на пучке протонов(~ 640 МэВ) от синхроциклотрона Лаборатории ядерных проблем ОИЯИ.

С целью проверки работоспособности метода при более высоких энергиях был изготовлен и испытан вариант прибора для исследований на пучке протонов(~1 ГэВ)гатчинского синхроциклотрона ЛИЯФ.

II. УСЛОВИЯ ЭКСПЕРИМЕНТА

1. Схема эксперимента приведена на <u>рис.1</u>. Пучок протонов с энергией ~1 ГэВ, выведенный из камеры ускорителя, проходил в воздухе последовательно фокусирующую секцию магнитного канала, триплет магнитных линз, формирующий целевой коллиматор, дублет магнитных линз и с помощью отклоняющего магнита поворачивался на угол 9°40′ и направлялся в коллиматор длиной 4,5 метра. На входе коллиматор имел диаметр $D_1 = 12$ мм / $L_1 = 1,5$ м/ и на выходе $-D_2 = 5$ мм / $L_2 = 1,0$ м/. Черенковский прибор располагался непосредственно за бетонной защитой на выходе коллиматора. В этих условиях интенсивность пучка составляла ~10⁹ протонов/с.

2. Схема /и принцип работы/ прибора повторяет выбранную ранее /<u>рис.2</u>/. Частицы со скоростью β_0 направляются по нормали ко входной зеркальной грани III призмы-радиатора с абсолютным показателем преломления \mathbf{n}_0 для длины волны λ_0 . Излучение Вавилова-Черенкова /ИВЧ/, возникшее в призме, выводилось через грани I и II и регистрировалось двумя фотоаппаратами "Зенит-Е" с объективами "Гелиос-40" /с f = 8,5 см/, установленными на бесконечность. Причем в фотоаппарат I попадало как прямое, так и дважды отраженное МВЧ. Углы выхода ИВЧ /например, через грань I / прямого - \mathbf{r}_1 и дважды отраженного - \mathbf{r}_2 связаны с углом $\theta_0(\lambda) = \arccos[\mathbf{n}_0(\lambda)\beta]^{-1}$ выражением, приведенным в работе '1':

$$\theta_{0} = a_{2} \pm \arcsin \frac{1}{n_{0}} \left\{ \frac{\sin^{2} \frac{r_{1} + r_{2}}{2} - n_{0}^{2} tg^{2} \frac{r_{1} + r_{2}}{2} \sin^{2}(a_{2} - a_{1})}{\cos^{2}(a_{2} - a_{1}) - tg^{2} \frac{r_{1} + r_{2}}{2} \sin^{2}(a_{2} - a_{1})} \frac{1/2}{2} \right\} / 1/$$

где $n_0' = \frac{-v}{n_1}$ - относительный показатель преломления призмы,

1

 a_1 и a_2 - углы при основании призмы. Поскольку в данном приборе углы a_1 и $a_2 > \theta$, то при вычислениях θ_0 в формуле /1/ перед корнем брался знак /-/. Для уменьшения ошибок измерений угла θ_0 перед объективами "Гелиос-40" располагались интерференционные фильтры с полосой пропускания $\Delta\lambda \sim 10$ нм для $\lambda_0 \sim \sim 600$ нм, использовавшиеся ранее ^{/8/}. Оптические оси объективов ориентировались по нормали к выходным граням I и II призмырадиатора. ИВЧ регистрировалось на кинопленке КН-3 с чувствительностью 130 ед. ГОСТ.

> Рис.1. Тракт пучка протонов, выведенного из синхроциклотрона на энергию 1 ГэВ ЛИЯФ: 1 - вакуумная камера ускорителя; 2 - фокусирующая секция магнитного канала; 3 триплет магнитных линз; 4 - щелевой коллиматор; 5 - дублет магнитных линз; 6 - отклоняющий магнит с вакуумной камерой /7/; 8 входной и выходной коллиматоры; 9 - место расположения черенковского прибора; 10 - защита ускорителя; 11 - пучок протонов.

Рис.2. Принцип работы черенковского устройства: а/ ход лучей в призме-радиаторе; б/ вид на призму против пучка /штриховкой показаны зеркальные части граней, а пунктиром – профиль пучка частиц/.

3. Параметры призмы-радиа/тора. Углы a_1 и a_2 при основании призмы измерялись с помощью/гониометра ГС-5 /с точностью $\pm 5''$ / и получились равными: $a_1 = 40^\circ 30'10''$ и $a_2 = 40^\circ 29'13''$. Призма-радиатор была изготовлена из плавленного кварца со значениями относительных показателей преломления, приведенными в <u>табл.1</u> для $t = 20^\circ$ C.

.λ, нм	n (λ)	λ,ΗΜ	n ())	
404,7	1,46955	546,1	1,46020	
407,8	1,46924	577,0	1,45898	
435,8	1,46671	579,0	1,45887	
491,6	1,46292			

Экстраполяционная формула для показателей преломления в измеренном диапазоне длин волн имеет вид:

$$n(\lambda) = 1,44816 + \frac{3,69103 \cdot 10^{-8}}{\lambda^2} - \frac{3,09715 \cdot 10^{-5}}{\lambda^4}, \qquad /2/$$

где λ - в мкм. Точность определения в по формуле /2/ составляет $\Delta n = \pm 4 \cdot 10^{-5}$. Для средних длин волн пропускания использовавшихся интерференционных фильтров /для нормального падения лучей относительные показатели преломления n_0' призмы-радиатора приведены в табл.2.

Таблица 2

Таблина 1

Фото аппарат	λ, нм	n _б при t=20°С	ћ ₁ воздуха при t ₌ 20°С
Ι	605,9	1,457985	1,000272
II	601,3	1,458132	1,000272

Ширина призмы в основании b = 9,4 мм, а ее высота - 20 мм.

III. РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ

1. <u>Средняя энергия</u>. При экспонировании устройства, показанного на <u>рис.3</u>, на пучке протонов ~ 1 ГэВ были получены изображения ИВЧ, зарегистрированные фотоаппаратами I и II и показан-

Рис.3. Общий вид прибора: 1 - пучок протонов с энергией 1 ГэВ; 2 - призмарадиатор; 3 - ИВЧ; 4 плоское зеркало; 5 - фотоаппарат "Зенит-Е" с объективом "Гелиос-40" /1:1,5, f = 85 мм/; 6 - интерференционный фильтр; 7 - коллиматор.

ные на <u>рис.4</u>. Взаимное расположение "дуг" ИВЧ /от прямого и дважды отраженного ИВЧ/ характерно для углов испускания ИВЧ $\theta < \alpha$. Среднее расстояние между "дугами" определялось путем фотометрирования на быстродействующем микрофотометре II /Карл Цейсс, Иена/ черенковских изображений в направлении, перпендикулярном к их оси симметрии. Точность измерения расстояний составляла +0,01 мм. Типичная фотометрическая кривая показана на <u>рис.5</u>. Для определения наименьшего расстояния между "дугами" на каждом кадре проводилось несколько измерений на различных высотах через 1 мм. Результаты этих измерений аппроксимировались параболой по методу наименьших квадратов, и отыскивался ее минимум. В соответствии с калибровкой объективов "Гелиос-40", т.е. определением соотношения между линейной и угловой мерами в их фокальных плоскостях, определялся угол $\frac{r_1+r_2}{2}$, входящий в формулу /1/. При подстановке величин a_1 и a_2 , $\frac{r_1 + r_2}{2}$, и n'_0 из <u>табл.2</u> по этой же формуле определялся угол θ_0 ИВЧ в призме. Из соотношения $\cos \theta_0 = \frac{1}{n_0\beta}$, где n_0 - абсолютный показатель преломления, находилась средняя скорость протонов в центре призмы - β_0 и соответствующая ей кинетическая энергия протонов $T=m_p(y-1)$, где m_p - масса покоя протона, принимавшаяся равной 938,2529 МэВ, а $y=(1-\beta^2)^{-12}$.

Зависимость средней энергии T от наименьшего расстояния между "дугами" ИВЧ для фотоаппаратов I и II показана на <u>рис.6.</u> Отметим, что вблизи энергии T \simeq 1 ГэВ $\Delta \mathbf{T}/\Delta \ell \simeq 20$ МэВ/мм.

2. <u>Ошибки измерений</u> энергии простым методом просуммированы в табл.3.

Суммарная среднеквадратичная ошибка определения средней

Рис.6.Зависимости средней энергии протонов Т от наименьшего расстояния между "дугами" ИВЧ для фотоаппаратов I и II.

висимости от угла отклонения частиц пучка от нормали ко входной грани призмы-радиатора.

5

ров не превышала +1,3 МэВ. При регистрации ИВЧ обоими фотоаппаратами средняя энергия вычислялась как

$$\bar{\mathbf{T}} \pm \Delta \bar{\mathbf{T}} = \frac{\left(\frac{1}{\Delta T_1}\right)^2 \cdot \mathbf{T}_1 + \left(\frac{1}{\Delta T_2}\right)^2 \cdot \mathbf{T}_2}{\left(\frac{1}{\Delta T_1}\right)^2 + \left(\frac{1}{\Delta T_2}\right)^2} \pm \frac{1}{\sqrt{\left(\frac{1}{\Delta T_1}\right)^2 + \left(\frac{1}{\Delta T_2}\right)^2}}, \qquad /3/$$

где T_1 и T_2 - средние энергии, определенные при регистрации ИВЧ фотоаппаратами I и II, а ΔT_1 и ΔT_2 - соответствующие им ошибки. Средняя ошибка в этом случае составляла $\overline{\Delta T} = 0,9$ МэВ / $\Delta \beta = 1,23 \cdot 10^{-4}$ /.

Кроме указанных в <u>табл.3</u> ошибок измерений, анализировалось также влияние отклонения направления входа частиц от нормали ко входной грани призмы на точность определения энергии. В работе^{/1/} указывалось, что этот метод нечувствителен к такого рода неопределенностям. Однако при прецизионных измерениях важно знать допустимые отклонения углов наклона частиц $\Delta\psi$ при заданной точности измерения энергии частиц. Поэтому были проведены соответствующие расчеты для параметров данного прибора, результаты которых показаны на <u>рис.7</u>. Из рисунка видно, что при $\psi \le 0.5^{\circ}$ величина сдвига ΔE не превосходит 0,016 МэВ. Как правило, при выполнении предварительной юстировки входной грани призмы-радиатора к оси коллиматора, формирующего пучок, величина ψ не превосходит вышеуказанной.

Измерения средней энергии выведенного пучка протонов от ускорителя ЛИЯФ АН СССР простым черенковским методом выполня-

			Taounita 5
№ п/	п Ошибка	Величина	ΔТ _і , МэВ
1.	Измерения углов а ₁ иа. ₂ призмы-радиатора, Δ а	<u>+</u> 5″	<u>+</u> 0,13
2.	Измерения показателей пре- ломления призмы-радиатора,∆п	<u>+</u> 4•10 ⁻⁵	<u>+</u> 0,17
3.	Неопределенность показателя преломления воздуха, Δn _B	<u>+</u> 5•10 ⁻⁸	<u>+</u> 0,032
4.	Калибровка объективов, ∆С, с/мм	<u>+</u> 3 c/mem	+0,24
5.	Определения минимального расстояния между "дугами" ИВЧ ΔS, мм	<u>+</u> 0,06	<u>+</u> 1,22
6.	Неопределенность в угле падения ИВЧ на интерферен- ционный фильтр, Δφ≃±1°(Δλ≃±10Å)	+3,3.10-5	<u>+</u> 0,14

Таблица З

лись несколько раз на протяжении двух лет /1977-1979 гг./. Сводные данные этих измерений представлены в табл.4.

Интересно сравнить полученные результаты измерений с данными работы ^{/5/} /<u>рис.8</u>/, где определение средней энергии производилось путем сравнения времен пролета протонов и света на определенной базе. В пределах **ошибок измерений данные** настоящей работы /экспозиция от 21.01.1979 г./ находятся в согласии с результатами ^{/5/}. Необходимо отметить и колебания средней энергии протонов в пределах до 4 МэВ, что, по-видимому, обусловлено в основном различиями в размещении элементов и параметров тракта выведения и формирования пучка.

В заключение необходимо сказать о разрешающей способности прибора. Из <u>рис.5</u> видно, что полная ширина на полувысоте пика ИВЧ составляет ~20 МэВ. Собственное разрешение устройства определяется факторами, приведенными в <u>табл.5</u>, и составляет ~12 МэВ.

Остальные 16 МэВ от экспериментальной ширины обусловлены такими параметрами пучка протонов, как его угловая расходимость и энергетическая неоднородность. Однако разделить эти факторы не представляется возможным из-за неопределенности в угловой расходимости пучка /так, например, геометрическая расходимость, оцененная из размеров отверстий и длины исполь-

Ta	блиц	a	4

Дата	Средняя энергия, МэВ			
Измерении	в центре	перед	на выходе и з камеры	
	призмы	призмой *	уско рителя **	
14.11.1977	г. 1000,86	1001,50	1006,55	
	г. 1001,46	1002,10	1007,15	
16.12.1978	г. 1001,78	1002,42	1007,47	
	г. 1001,98	10002,62	1007,67	
21.01.1979	998,33	998,97	1004,02	
	997,70	998,34	1003,39	
	998,58	999,22	1004,27	
	998,50	999,14	1004,19	

*Эти величины получены с учетом замедления протонов 1 ГэВ в призме-радиаторе из SiO_2 на половине ее эффективной толщины t/2=0,34 г/см² и данных по ионизационным потерям $^{/4/}(\Delta E_1 = 0,64$ МэВ).

**Величины получены с учетом замедления протонов в воздухе $(\frac{\Delta E}{\Delta x} = 1,96 \text{ МэВ см}^2/\Gamma)$ на длине 20 м / $\Delta E_{g^{=}}$ 5,05 МэВ/.

6

7

Таблица 5

NP	п/п Фактор уширения	$\Delta heta_{\mathbf{i}}$, мин	ΔЕ _і , МэВ
1.	Многократное рассеяние	<u>+</u> 4 ′	<u>+</u> 5,9
2.	Замедление протонов в призме-радиаторе		<u>+</u> 0,32
3.	Ширина интерференционного фильтра / <u>+</u> 50 Å /	-	<u>+</u> 0,72

Рис.8. Результаты измерений энергии выведенного пучка протонов от синхроциклотрона ЛИЯФ АН СССР/г.Гатчина/, о – данные настоящей работы, Δ – данные работы $^{/5/}$.

зованного коллиматора,составляет 13,1',или 19,4 МэВ,что превосходит ширину, приходящуюся на оба фактора/.

За содействие в выполнении данной работы авторы благодарны члену-корреспонденту АН СССР В.П.Джелепову и Л.М.Онищенко;

ž

за помощь в проведении сеансов работы на ускорителе ЛИЯФ сотрудникам этого института М.М.Козлову, С.П.Круглову, Е.А.Дамаскинскому, В.А.Гордееву, В.П.Коптеву, С.М.Микиртычьянцу, Л.А.Кузьмину, а также сотрудникам ОИЯИ Я.Ружичке, М.Ф.Шабашову, В.С.Надеждину, В.В.Ермакову и Р.В.Столупиной.

ЛИТЕРАТУРА

- 1. Zrelov V.P. Nucl.Instr. and Meth., 1974, vol.115, p.457.
- Zrelov V.P., Lupiltsev V.P., Shabashov M.F. Nucl.Instr. and Meth., 1976, vol.134, p.437.
- 3. Зрелов В.П. и др. ОИЯИ, Р13-5636, Дубна, 1971.
- 4. Studies in Penetration of Charged Particles in Matter. Publ.1133. Nation.Acad.Sc., W., 1964.
- 5. Денисов А.С. и др. Препринт ЛИЯФ №261, Л., 1976.

Рукопись поступила в издательский отдел 5 апреля 1982 года.