

Объединенный институт ядерных исследований дубна

3/41-80

13-80-464

Г.Айхнер, А.Н.Алеев, В.А.Арефьев, В.П.Баландин, В.К.Бирулев, Л.Вайи, И.Вереш, Т.С.Григалашвили, Б.Н.Гуськов, З.Кайчош, * Д.А.Кириллов, И.Г.Косарев, Н.А.Кузьмин, Б.А.Кулаков, М.Ф.Лихачев, Л.Лохоняи, А.Н.Максимов, А.Монтваи, * А.Н.Морозов, Я.Пазони, * Л.Сабо *

КОНСТРУКЦИЯ И СТЕНДОВЫЕ ИСПЫТАНИЯ ПРОПОРЦИОНАЛЬНЫХ КАМЕР СПЕКТРОМЕТРА БИС-2

Направлено в ПТЭ

* Центральный институт физических исследований ВАН, Будапешт, ВНР.

Айхнер Г. и др.

13-80-464

Конструкция и стендовые испытания пропорциональных камер спектрометра БИС-2

Методом магнитного спектрометра проводится поиск новых частиц на канале нейтральных частиц серпуховского ускорителя. Для спектрометра разработана конструкция и проведены исследования на стенде физических характеристик пропорциональных камер на линии с ЭВМ ТРА-10001Приводятся результаты исследований пропорциональных камер с различными газовыми смесями. Выбрана "рабочая" газовая смесь и приводятся характеристики пропорциональных камер с этой газовой смесью.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1980

Eichner G. et al.

13-80-464

Design abd Stand Test of Spectrometer Proportional Chambers

1. ВВЕДЕНИЕ

Для поиска новых частиц в адрон-адронных взаимодействиях в пучке нейтральных частиц серпуховского ускорителя был создан бесфильмовый спектрометр БИС-2 ОИЯИ. Спектрометр работает на линии с ЭВМ ЕС-1040 и ТРА-10011. БИС-2 состоит из спектрометрического магнита типа СП-40, 10 пропорциональных камер /ПК/, годоскопа из сцинтилляционных счетчиков, детектора гамма-квантов и электронов - годоскопа из 140 черенковских счетчиков полного поглощения /ЧСПП/, детектора мюонов /ДМ/, нейтронного монитора /м/ и соответствующей электронной аппаратуры. ПК до включения их в БИС-2 были испытаны на стенде. Ниже описываются конструкция и результаты стендовых испытаний ПК спектрометра БИС-2.

2. КОНСТРУКЦИЯ ПК

В спектрометр БИС-2 входят ПК с размерами рабочих областей от /400x300/ мм² до /1000x600/ мм². Все ПК спектрометра двухкоординатные за исключением одной /ПК1/. Размеры рабочих областей всех ПК, используемых в спектрометре, число сигнальных проволок и некоторые конструктивные параметры приведены в таблице, где L - расстояние между электродами, S - расстояние между сигнальными проволоками, S1 - расстояние между высоковольтными /в/в/ проволоками, X - горизонтальный размер ПК, Y - вертикальный размер ПК.

Все ПК разборные, содержат в одном газовом объеме 2 сигнальных электрода /плоскости/: "Х" - плоскость - сигнальный электрод с вертикально расположенными проволоками, "Ү" - плоскость - сигнальный электрод с горизонтально расположенными проволоками. Все ПК имеют в основном одинаковую конструкцию.

Стандартная ПК состоит из 7 одинаковых диэлектрических рам толщиной 6 мм, изготовленных методом литья из эпоксидного компаунда. Шесть рам несут на себе проволочные электроды, седьмая рама предназначена для газового обеспечения внутреннего объема ПК.

Диэлектрические рамы помещены между внешними алюминиевыми рамами, и все они стягиваются латунными шпильками. Окна рам закрыты майларовыми пленками толщиной 60 мкм. Все рамы с проволочными электродами имеют наклеенные печатные электроды,

> Объединсьный ниститут ядерных всследования БИБЛИОТЕНА

1

Таблица

₿ IIK	Размеры, мм		L Mim		S MOM		S ₁ MM		N CHIH. IDOR.		Ø в/в	ø сигн.	. Ilриме-
	X	у	X	у	X	у	X	У	X	У	пров., мкм	пров мкм	з., чание
I	400	300	8	_	2	-	2	-	I60	-	001	20	
2	400	300	8	8	2	2	2	2	I92	Į50	60	20	
3	400	300	8	8	2	2	2	2	192	150	60	20	
4	820	300	8	8	2	2	2	2	396	I38	60	20	
5	820	300	8	8	2	2	2	2	396	I38	60	20	
6	1000	600	6	6	2,16	2,16	I	Ι	456	456	100	20	угол на- мотки 22,5
7	1000	600	8	8	2	2	Ι	I	480	288	60	20	
8	1000	600	6	6	2,16	2,16	I	I	456	456	100	20	угол на- мотки 22,5
9	1000	600	8	8	2	2	I	I	480	288	60	20	
0	1000	600	8	8	2	2	Ι	I	480	288	60	20	

№ – число сигнальных проволок, 🖉 – диаметр в/в и сигнальной проволоки.

. .

к которым припаяны как сигнальные проволоки,так и входы усилителей. Печатные электроды изготовлены из фольгированного стеклотекстолита толщиной 2 мм и дополнительно увеличивают общую жесткость рам.

Для намотки сигнальных электродов во всех ПК использована проволока из золоченого вольфрама, а для высоковольтных/в/в/ электродов - проволока из бериллиевой бронзы. Перед намоткой проволочных электродов был проведен анализ устойчивости проволок при наличии электрического поля. Результаты этого анализа совпали с результатами работы^{/1/}. При намотке проволок были выбраны следующие натяжения: проволока из золоченого вольфрама диаметром 20 мкм натягивалась с усилием 60 г, бронзовая проволока диаметром 60 мкм - с усилием 90 г, бронзовая проволока диаметром 100 мкм - с усилием 100 г. Несколько проволок по краям в/в электродов во всех ПК имеют диаметр 100 мкм и натянуты с усилием в полтора раза больше, чем все остальные.

После намотки проволок их натяжения контролировались устройством, разработанным и изготовленным в ЦИФИ ВАН /Будапешт/. Точность контроля натяжений составляла не хуже 1%. Принцип измерения основан на определении частоты электрических колебаний в проволоке, возбужденной в магнитном поле. Разброс натяжений проволок в одной плоскости ПК не превышал 3÷4%.

2.1. Особенности конструкции больших ПК

ПК, начиная с размеров рабочей области $820 \times 300 \text{ мм}^2$, имеют некоторые особенности в конструкции. При большом количестве проволок в ПК возможна деформация рамок и вследствие этого, провисание проволок и выход из строя ПК. Для исключения этого эффекта перед намоткой электродов рамки всех больших ПК деформировались на определенную величину $\Delta \ell$, которая для каждой ПК определялась экспериментально. Кроме того, угловые отверстия в рамах, а также отверстия в середине каждой из четырех сторон и соответствующие стягивающие шпильки были изготовлены с точностью +0,01 мм.

Сигнальные проволоки "Y" - плоскостей в ПК с размерами рабочих областей /1000х600/ мм² и ортогональной намоткой проволок имеют поддерживающие линии. Последние выполнены в виде пары монтажных проводов, натянутых с обеих сторон сигнальной плоскости перпендикулярно проволокам с усилием 0,5 кг, и связаны между собой тонкими нейлоновыми нитями через 5÷6 см. На поддержки подается регулируемое по величине постоянное напряжение. Изоляция поддержек выдерживает напряжение до 1,5 кВ.

Сигнальные плоскости в ПК6, ПК8 намотаны под углом 45° относительно друг друга и под углом 22,5° относительно вертикали. Максимальная длина сигнальных проволок - 650 мм. В этих ПК всего 3 в/в плоскости, проволоки которых расположены горизонтально и на которые подается напряжение от одного источника.

Рамы для электродов ПК6 и ПК8 с "косой" намоткой проволок изготовлены из трех пластин стеклотекстолита толщиной 2 мм, склеенных между собой. Один из слоев несет печатные проводники. Все ПК спектрометра, кроме камер с "косой" намоткой, имеют "охранные кольца", окружающие сигнальные плоскости с обеих сторон.

2.2. Подключение электроники к ПК

Входы усилителей подсоединяются к одной из сторон проводников, к которым подпаяны сигнальные проволоки. Параллельно входам усилителей непосредственно к печатным электродам припаяны объемные резисторы типа TBO-0,125 величиной от 30 до 75 кОм, которые позволяют постоянно поддерживать сигнальные проволоки под потенциалом Земли вне зависимости от высоковольтного напряжения и подключения усилителей. Резисторы TBO на работу усилителей не влияют.

Вся электроника, размещенная на ПК, смонтирована в дюралюминиевых кожухах. В них размещены промежуточные разъемы для

· 2

подсоединения усилителей, выходные разъемы типа 2РМ для подключения кабелей, связывающих усилители с регистрирующей электроникой в домиках экспериментаторов ^{/2/}, схемы "ИЛИ" для формирования сигналов запуска БИС-2^{/3/}. Так как на одной ПК размещается до 1000 каналов, то электрический монтаж довольно сложен и осуществлен с помощью специального печатного "кросса". Для устойчивой работы усилителей используются независимые заземления цепей входных и выходных сигналов. В кожухах предусмотрена естественная и принудительная вентиляция, обеспечивающая для электроники нормальный рабочий температурный режим.

3. ИСПЫТАНИЯ И ХАРАКТЕРИСТИКИ ПК

После изготовления ПК прошли испытания на стенде для выявления их главных характеристик: эффективности регистрации заряженных частиц в зависимости от высоковольтного напряжения, шумовых свойств на участке "плато" кривой "эффективность напряжение", зависимости характеристик ПК от состава газа, их долговременной стабильности, влияния "поддержек" и др.

3.1. Условия испытаний ПК

Испытания проводились на стенде, который состоял из:

- "координатора" - механического устройства, позволяющего проводить измерения в любой точке рабочей области ПК с точностью +0,5 мм;

- монитора из двух ФЭУ, собирающих свет с одного сцинтиллятора;

- системы коллиматоров с радиоактивным источником ⁹⁰ Sr;

- набора электронных блоков для запуска системы и регистрации информации с ПК ^{/2/};

- ЭВМ типа TPA-1001i.

Исследуемая ПК устанавливалась на "координаторе". Одна сигнальная плоскость камеры исследовалась, другая - включалась на совпадение с монитором, что позволило уменьшить число случайных запусков до величины <1%.

Схема включения электроники позволяла одновременно измерять эффективность по суммарным сигналам "быстрое "ИЛИ" ^{/3/} и по данным, поступающим с каждой сигнальной проволоки в ДВМ.

Число шумовых импульсов измерялось непосредственно по суммарным сигналам "быстрое ИЛИ", а также косвенным образом – поканально, по числу случайных совпадений в отсутствие ⁹⁰ Sr, когда вместо импульсов монитора для запуска использовались импульсы генератора с известной частотой.

Рис.1. Зависимость эффективности ПК от приложенного высоковольтного напряжения для разных газовых смесей. а/ (I, II, III) - 15% CO., (IV-V) - 20% CO_2 , VI - 30% CO_2 ; I - "Х" -плоскости ПК /4÷5/, порог усилителя 1 мкА, II - "Ү" -плоскости ПК /4÷5/, порог усилителя 1 мкА, III - "Х" -плоскость ПК1, порог усилителя 1 мкА, IV - "X" -плоскости ПК /4+5/, порог усилителя 2 мкА, V - "Х" -плоскости ПК /2+3/, порог усилителя 2 мкА, VI -"Х" - плоскости ПК /4+5/, порог усилителя 2 мкА; б/ (I,II, IV) -"Х"-плоскости ПК7, ПК9, ПК10; III - "Y"-плоскости ПК7, ПК9, ПК10: в/ ПК с "косой" намоткой; I - для газовой смеси с 20% СО, /для одной ПК/, II - область изменения эффективности для двух ПК с 30% CO, в газовой смеси, III - область изменения шумов для двух ПК с 30% СО, в газовой смеси; г/ изменение шумов со временем в области "плато" по эффективности для большой ПК /1000x600/ MM²; I - ϵ (%) = f(U_{kB}), II - кривая шумов в пределах "плато". III - кривая шумов через трое суток непрерывной работы.

4

- 5

Радиоактивный источник обеспечивал загрузку до 10⁵ частиц в секунду на проволоку. Система коллиматоров позволяла изменять размеры пучка электронов по горизонтали и вертикали в пределах от 1 до 5 мм. Измерения проводились с чувствительностью усилителей 1 и 2 мкА.

Исследования ПК выполнялись со следующими газовыми смесями: $-A_r + CO_2 + 3\%C_2H_5OH(15\%CO_2, 20\%CO_2 30\%CO_2),$ $-A_r + 25\%C_4H_{10} + 4\%C_3H_8O_{2^+}0,3\%CBrF_3,$ $-A_r + 13\%CO_2 + 3\%C_2H_5OH + 0,3\%CBrF_3,$ $-A_r + 13\%CO_2 + 4\%C_3H_8O_2 + 0,3\%CBrF_3.$

3.2. Исследование эффективности и шумовых свойств ПК

Исследование характеристик ПК с газовой смесью аргон-углекислота-спирт позволяло выявить закономерности поведения ПК, обусловленные их конструкцией.

На <u>рис.1a</u> представлено семейство кривых "эффективностьнапряжение" для ПК1÷ПК5, снятых для трех газовых смесей. На этом же рисунке показаны результаты сравнительных измерений при различных порогах усилителей.

На <u>рис.16</u> изображены зависимости эффективности от напряжения ПК с размерами рабочей области /1000x600/ мм² и ортогональной намоткой сигнальных электродов для этих же трех газовых смесей. Все кривые на этом рисунке и далее сняты с чувствительностью усилителей 2 мкА.

Зависимость эффективности от напряжения, приложенного к ПК, и область изменения шумов для двух ПК с "косой" намоткой сигнальных проволок показаны на рис.1в.

Шумы всех ПК с ортогональной намоткой сигнальных электродов не сильно отличались друг от друга, поэтому на <u>puc.1r</u> приведены кривые шумов в зависимости от напряжения для одной из больших ПК в области "плато" по эффективности непосредственно после включения /кривая II / и через трое суток непрерывной работы /кривая III /. Представленные на <u>puc.1</u> кривые показывают нормальную работу ПК разных размеров и с различной добавкой CO₂. Однако после длительных измерений /до двух-трех недель/ с газовой смесью аргон-углекислота-спирт появлялась нестабильность в работе ПК, выражающаяся в увеличении числа шумовых импульсов и, в отдельных случаях, в искрообразовании. При исследовании этих явлений было обнаружено стойкое отложение углерода на высоковольтных проволоках. В связи с этим были предприняты исследования с другими газовыми смесями. Исследования проводились с ПК с размером рабочей области /1000х600/ мм².

На рис.2а приведена зависимость эффективности и шума ПК от в/в напряжения для "магической" газовой смеси: аргон, 25% изобутана, 4% метилаля, 0,3% фреона-13Б1. Аргон продувался через метилаль. помещенный в термостат при 0°С. Хотя величина "плато" по эффективности, приведенная на рис.2а, больше, чем для газовых смесей с углекислотой, практически использование ПК с "магической" смесью было крайне затруднено из-за следующих факторов: 1/ для газового обеспечения ПК необходимо применять специальные трубки, не растворяемые метилалем; 2/ изобутан - горючий и токсичный газ, требующий вывода отработанной газовой смеси в атмосферу; 3/ промышленный метилаль содержит кислотные добавки, ликвидировать которые можно методом перегонки, однако контроль оставшейся после перегонки кислотной примеси - сложная процедура; использование метилаля без специального контроля оставшейся кислотной примеси может привести при длительной эксплуатации ПК /в течение наскольких тысяч часов/ к разрушению проволок; 4/ метилаль не препятствует полностью полимеризации изобутана, и через некоторое время на проволоках образуется налет серого цвета, а "плато" сдвигается в сторону больших напряжений.

Отложение углерода на проволоках и ухудшение эксплуатационных свойств ПК происходит, вероятно, из-за образования коронных разрядов внутри ПК. Необходимо было "подавить" эти разряды, не изменяя других характеристик ПК.

С этой целью в газовую смесь аргон-углекислота-спирт была введена электроотрицательная добавка в виде фреона-13Б1 (CBrF₃). Добавление фреона смещает "плато" эффективности в сторону более высоких напряжений. Это смещение было скомпенсировано уменьшением количества CO₂. В результате была подобрана газовая смесь:

 $Ar + 13\% CO_{2} + 3\% C_{2}H_{5} OH + 0.3\% CBrF_{3}$.

Зависимость эффективности и шума от высоковольтного напряжения для этой смеси в одной из больших ПК приведена на <u>рис.26</u>. Длительная работа на этой смеси показала высокую стабильность ПК. Данная газовая смесь была выбрана в качестве "рабочей".

Исследовалась также аналогичная смесь, в которую вместо этилового спирта было введено 4% метилаля. Характеристики ПК для этой смеси показаны на <u>рис.2в</u>. Как видно из рисунка, использование метилаля дает лучшие результаты. Однако применение метилаля в "рабочей" газовой смеси было нами отвергнуто из-за приведенных выше причин.

Рис.2. Зависимость эффективности и шума от высоковольтного напряжения для одной из больших ПК: а/ с "магической" газовой смесью: $Ar + 25\% C_4 H_{10} + 4\% C_3 H_8 O_2 + 0.3\% CBr F_3;$ б/ с выбранной "рабочей" газовой смесью: Ar + 13% CO ₂ + 3% C₂H ₅OH + + 0,3% CBr F 3; в/ с добавкой в газовую смесь метилаля и фреона-1351: Ar + 13% CO₂ + 4% C₃ H₈O₂ + 0,3% CBrF₃.

Измерения долговременной стабильности значений эффективностей всех ПК, проведенные в течение трех суток непрерывной работы, показали, что максимальное среднеквадратичное отклонение от среднего значения составляет 1.2%.

3.3. Влияние поддерживающих линий

С целью выяснения влияния поддерживающих линий была измерена зависимость эффективности ПК от расстояния между треком прошедшей частицы и поддерживающей линией.

Кривые, приведенные на рис.За, показывают, что с помощью потенциала, поданного на поддерживающие линии, удается достаточно хорошо скомпенсировать уменьшение эффективности, вызванное размещением "поддержек" внутри ПК.

Выбор необходимого потенциала иллюстрируется кривой /рис. 36/ эффективности. полученной непосредственно в месте расположения поддержки /измерения проводились с электронным пучком шириной 1 мм/.

3.4. Временные свойства ПК

Временные характеристики исслелуемых ПК практически совпадают

Рис. 3. Эффективность ПК в области "поддержек". а/ сплошная кривая при отсутствии напряжения на "поддержке", вверху /точки/ - при напряжении на поддержке 1,3 кВ; б/ в зависимости от приложенного к поддержке напряжения.

Рис. 4. Кривые задержанных совпадений для большой ПК /1000x600/ мм с "магической" ¹⁰⁰ газовой смесью /для двух значений длительности стробсигнала.

с известными характеристиками подобных камер, имеющих конструктивные параметры, аналогичные параметрам, приведенным в таблице. Для иллюстрации в работе /3/ приведен временной спектр, типичный для описываемых ПК.

50

T=150r

64

32

T= 1004

H802+03CBzF3

Ar+25%C4H10+4%Ca

96 128 160 192 [3ad/H]

4. ЗАКЛЮЧЕНИЕ

Краткий итог данной работы заключается в следующем:

а/ разработаны и созданы пропорциональные камеры разных размеров для использования их в спектрометре БИС-2 ОИЯИ;

в/

29

б/

б/ проведены подробные испытания ПК с целью выяснения их характеристик;

в/ выбраны смеси, пригодные для длительной эксплуатации.

٩,

ЛИТЕРАТУРА

\$

- 1. Тельнов В.И. ПТЭ, 1974, №5, с.46.
- 2. Айхнер Г. и др. ОИЯИ, 13-10524, Дубна, 1977.
- 3. Айхнер Г. и др. ОИЯИ, 13-80-161, Дубна, 1980.

Рукопись поступила в издательский отдел 2 июля 1980 года.

Нет ли пробелов в Вашей библиотеке?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

Д1,2-84O5	Труды IV Международного свыпозву- ма по фязыке высоких энергий и эле- ментарных частиц. Варна, 1974.	2р. О5к.
P1,2-8529	Труды Международной школы-семи- нара молодых ученых. Актуальные проблемы физики элементарных час- тиц. Сочи. 1974.	2 р. 60 к.
Д6-8846	XIV совещание по ядерной слектро- сколын и теории ядра. Дубна, 1975.	1 р. 90 к.
Д13-9164	Международное совещаняе по мето- деке проволочных камер.Дубна,1975.	4р. 20 к.
Д1,2-9224	IV Международный семвнар по про- блемам физики высоких энергий.Дуб- на, 1975.	3 р. 60 к.
Д-9920	Труды Международной конференции по избранным вопросам структуры адра. Дубна, 1976.	3 р. 50 к.
Д9-10500	Труды 11 Сныпознума по колектив- ным методам ускорення.Дубна, 1976.	2 p. 50 ĸ.
Д2 ₍ -10533	Труды Х. Международной школы молодых ученых по физике высоках энергий. Баку, 1976.	3 р. 50 к.
Д13-11182	Труды IX Международного симпо- зиума по ядерной электронике. Вар- на, 1977.	5 р. ОО к.
Д17-11490	Труды́ Международного сямпознума по избранным проблемам статисти- ческой механики. Дубна, 1977.	6 р. ОО к.
Д6-11574	Сборных аннотаций XV совещания по ядерной спектроскопим в теорны яд- ра. Дубиа, 1978.	2 р. 50 к.
Д3-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978-	3 р. ОО к.
Д13-11807	Труды 111 Международного сове- щання по пропорцеональным в дрей- фовым камерам. Дубна, 1978.	бр. ОО к.
	Труды УІ Всесоюзного совеща- нвя по ускорателям заряженных частиц. Дубна 1978. /2 тома/	7 р. 40 к.
Д1, 2-12 036	Труды V Международного семн- нара по проблемам физики высо- ких энергий. Дубна 1978.	5 p. OO ĸ.
P18-12147	Труды III совещания по ясполь- зованию ядерно-физических ме- тодов для решения научно-тех- нических в изполнолозаботрае-	
	ных задач.	2 р.20 к.

.

Д1,2- 1245 О	Труды XII Международной шко- лы молодых ученых по физике высоких энергий. Приморско,	
	НРБ, 1978.	3 р. ОО к.
P2-12462	Труды V Международного сове- щания по нелокальным теориям поля. Алушта, 1979.	2 р. 25 к.
Д-12831	Труды Международного симпозиума по фундаментальным проблемам тео-	
	ретической и математической физи- ки. Дубна, 1979.	4 p. ΟΟ κ.
Д-12965	Труды Международной школы моло- дых ученых по проблемам ускори- телей заряженных частиц. Минск, 1979.	3 р. ОО к.
Д11-80-13	Труды рабочего совещания по сис- темам и методам аналитических вы- числений на ЭВМ и их применению в теоретической физике. Дубна,	
	1979.	3 р. 50 к.
Д4-8 O-271	Труды Международной конференции по проблемам нескольких тел вядер- ной физике. Дубиа, 1979.	3 р. ОО к.
Д4-80-385	Труды Международной школы по	
	структуре ядра. Алушта, 1980.	5 p. OO ĸ.
		•
Altaka an d		
Заказы н	а упомянутые книги могут быть направлены по	адресу
	101000 Москва, Главпочтамт, п/я 79,	
издательск	ий отдел Объединенного института ядерных исс	следований