

СООбщения Объединенного института ядерных исследований дубна

> 20/4-80 13-80-414

Ю.С.Анисимов, Ю.В.Заневский, А.Б.Иванов, И.М.Иванченко, П.В.Мойсенз, Л.Моучка, В.Д.Пешехонов, А.Е.Сеннер, С.П.Черненко

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА ДЛЯ ИОННОЙ РАДИОГРАФИИ

Часть 1. Аппаратура

Анисимов Ю.С. и др.

13-80-414

Экспериментальная установка для ионной радиографии. Часть 1 . Аппаратура

Дается описание электронной аппаратуры экспериментальной установки для ионной радиографии. Описаны основные электронные блоки, выполнявшие функции усиления и дискриминации сигналов, быстрого отбора событий, регистрации информации с пропорциональных камер, управления и связи с ЭВМ, представления информации на цветном телевизионном дисплее. Приведены основные технические характеристики электронных блоков.

Аппаратура функционировала на линии с ЭВН НР-2116 В и обеспечивала высокую скорость набора информации. В установке в качестве детекторов использовались пропорциональные камеры с электромагнитными линиями задержки. При радиографии объектов получено разрешение по плотности лучше 0,1% при пространственном разрешении около 2 мм. Доза облучения тестовых объектов составила 1 мрад /при статистической обеспеченности около 100 событий на ячейку размером 2 x 2 мм ²/

Работа выполнена в Лаборатории высоких энергий ОИЯИ. Сообщение Объединенного института ядерных исследований. Дубна 1980

Anisimov Yu.S. et al. The Experimental Set-Up for Ion Radiographic Investigations. I. Apparatus Electronic system of the experimental set-up for ion radiographic investigations is described. Basic electronic

1. ВВЕДЕНИЕ

Исследования по применению заряженных частиц для радиографии начаты в 1967 г.^{1/}и проводятся сейчас во многих физических центрах^{/2/}. В 1978 г. в Лаборатории высоких энергий ОИЯИ была создана и исследована экспериментальная установка для ионной радиографии объектов^{/3/}. Метод основывается на прецизиснном измерении остаточных пробегов частиц, прошедших через исследуемый объект. Радиография с использованием заряженных частиц имеет два существенных преимущества по сравнению с обычной рентгеноскопией. Первое отличие - значительное уменьшение дозы облучения; второе - возможность получения контрастного изображения объектов, имеющих включения с незначительными отличиями по плотности от окружающей массы. В ходе экспериментов, проведенных на синхрофазотроне ОИЯИ, были получены результаты, позволившие оценить основные характеристики установки и параметры пучка гелия / Е = 800 МэВ/^{/4/}, используемого для радиографии.

2. БЛОК-СХЕМА УСТАНОВКИ

Схема установки приведена на <u>рис,1.</u> В ее состав входят сцинтилляционные счетчики (S1,S2), двухкоординатные пропорциональные камеры /ПК1 ÷ ПК3/, модуль из пропорциональных камер - детектор остановки /Д0/, электронная регистрирующая аппаратура, ЭВМ НР-2116 В.

Детектор остановки представляет собой 12 пропорциональных камер в одном газовом объеме с катодами из алюминиевой фольги, выполняющими роль поглотителей / $\rho = 0,095$ г/см²/. В качестве объектов исследования использовались пластины из оргстекла переменного сечения с набором отверстий разного диаметра /фантомы/, которые устанавливались непосредственно перед боксом с водой или помещались в воду. При размещении фантома толщиной $\ell/см/$ в боксе с водой изменение плотности соответствовало величине $\Delta \rho = 0,18$ /г/см /.Для получения точки остановки частиц в пределах детектора остановки использовался набор пластин из оргстекла / $\rho = 1,18$ г/см / в качестве поглотителя /П/. Координатные пропорциональные камеры и камеры Д0 имели чувствительную область 250 x 250 мм.

Рис.1. Схема расположения экспериментальной аппаратуры. П-поглотитель; S_1 , S_2 -сцинтилляторы; ПК1÷ПК3 координатные пропорциональные камеры; Б-бокс с водой; ДО-детектор остановки; К1-крейт КАМАК с электронной аппаратурой формирования и отбора событий; К2крейт КАМАК с блоками управления и регистри-

рующей электроникой; К3-крейт с блоками ТВ дисплея; ТМ-телевизионный монитор; ДНР-драйвер ДНР-821; ТС-телевизионная система PEP-500; ЭВМ-НР 2116 В; М-магнитофон; Д1-а/ц дисплей; Д2-графический дисплей; ЦП-цифропечать.

3. ЭЛЕКТРОННАЯ АППАРАТУРА

. Функциональная схема электронной аппаратуры приведена на рис.2. Электронной системой выполняются следующие функции:

1. Усиление и дискриминация сигналов, поступающих с пропорциональных камер;

- 2. Быстрый отбор событий;
- 3. Регистрация информации с пропорциональных камер;
- 4. Управление аппаратурой и связь с ЭВМ;
- 5. Представление информации на цветном телевизионном дисплее.

В установке используется метод измерения координат треков частиц с помощью пропорциональных камер с электромагнитными линиями задержки. Погонная задержка линий - 8 нс/мм. Съем сигналов осуществляется с одного конца линий. Информация о координате трека частицы определяется интервалом времени между сигналом с анодной плоскости камеры /"Старт"/ и сигналом "Стоп", передний фронт которого соответствует вершине сигнала, поступающего с линии задержки.

3.1. Быстрый отбор событий

Отбирались события, отвечающие условию $A_1 A_2 A_3 C_1 C_{12} \cdot S_1 \cdot S_2$, где A_i - сигналы с анода i-той пропорциональной камеры; C_1, C_{12} - соответственно первый и последний каналы /камеры/ детектора остановки. Второе условие отбора - однократное выполнение первого условия за время памяти ПК. Третье условие - обязательное

наличие только одного сигнала с каждой катодной линии задержки за время памяти /ПК/. Отбор событий, удовлетворяющих первому и второму условиям,осуществляется блоком анализа анодных сигналов /AAC/. Функции отбора событий, не удовлетворяющих третьему условию, осуществляются блоками анализа катодных сигналов/АКС/. Для этой цели использовались блоки ЛТ 203⁷⁷.

На <u>рис.3</u> приведена временная диаграмма, поясняющая работу схемы отбора. При выполнении первого условия блоком ААС вырабатываются сигналы "Строб" и "Ворота". Первый сигнал используется для стробирования информации с детектора остановки и поступает в блок "годоскопический регистр" / R 206/. Сигнал "Ворота" длительностью 2 мкс поступает в блоки анализа катодных сигналов и в блок ВЦП. Если за это время второе условие

Рис.2. Функциональная схема аппаратуры. Ф-формирователь; А-усилитель /2А-006/; Д-дискриминатор нуля /Д201/; Р-размножитель быстрый; Ау-усилители анодных сигналов детектора остановки; ВЦП-преобразователь время-цифра /R 302/; ДМА-блок, вырабатывающий сигналы синхронизации в режиме КПД; ГР-годоскопический регистр / R 206/; ААС-блок анализа анодных сигналов; АКС-блоки анализа катодных сигналов; БУ-блок управления 113 РА; КК-контроллер крейта КАМАК /С-004/; ИТС-интерфейс ТВ системы; ТС-телевизионная система /РЕР-500/; ДТМ-драйвер телевизионного монитора; ТМ-телевизионный монитор.

2

отбора не будет выполнено, в блоки, указанные на рис.2, подается сигнал "Быстрый сброс". Если третье условие отбора выполняется, по окончании сигнала "Ворота" с задержкой ~100 нс вырабатывается сигнал "Триггер", поступающий в блок управления /113 РА/. В этом случае по команде "Старт чтения" информация передается в ЭВМ. Если третье условие отбора не выполняется, по окончании "Ворот" вырабатывается сигнал "Быстрый сброс".

3.2. Усиление сигналов

Для усиления сигналов с координатных пропорциональных камер /ПК1 ÷ ПК3/ применен усилитель 2А - 006 ^{/6,7/}, принципиальная схема которого приведена на <u>рис.4</u>. Входное сопротивление усилителя /при максимальном коэффициенте усиления/ $R_{BX} = 4$ K, коэффициент усиления по напряжению $K_{U\,max} = 300$, полоса частот - 0,7÷ ÷ 10 МГц; уровень шумов, приведенный ко входу, $U_{III} = 12$ мкВ /среднеквадратичное значение/; сопротивление нагрузки $R_{III} = 50 \ \Omega$.

3.3. Дискриминация сигналов

В установке использованы дискриминаторы нуля /тип D201^{/7/}, принципиальная схема блока приведена на <u>puc.5</u>. Дискриминатор; выполненный в стандарте КАМАК, осуществляет "привязку" переднего фронта выходного сигнала к вершине входного. Для сигнала треугольной формы с фронтом 50 \div 150 нс при изменении амплитуды от порогового значения до 2 В точность привязки составляет \pm 1,5 нс; Собственная задержка дискриминатора r = 10 нс. Порог срабатывания регулируется в пределах от 40 до 100 мВ. Выходной сигнал-импульс уровня NIM длительностью ~ 50 нс.

Рис.5. Принципиальная схема дискриминатора Д-201.

3.4. Регистрирующая аппаратура

Информация о координатах трека частицы определяется интервалом времени между анодным и катодным сигналами. Цифровое кодирование осуществляется блоками ВЦП /тип R302 ⁽⁷⁾ / между сигналами "Старт" и "Стоп", соответствующими вершинам анодных и катодных сигналов. Тактовая частота кодирования - 125 МГц. Сигналы с пропорциональных камер детектора остановки регистрируются блоком R 206 ⁽⁸⁾, представляющим собой годоскопический регистр. Блоки выполнены в стандарте КАМАК.

3.5. Блоки управления и связи с ЭВМ

В установке использовалась аппаратура управления и связи с ЭВМ НР 2116 В масс-спектрометра "Фотон" включающая блоки 113 РА С-004, ДНР $^{/10}$, а также ряд вспомогательных блоков. Характерная особенность установки – передача большого объема данных в ЭВМ /около 1000 событий, или 12 К слов/ за время сброса пучка продолжительностью 250 мс. Высокая скорость сбора данных обеспечивается непрерывным использованием канала прямого доступа /КПД/ в течение времени сброса пучка и автосканированием крейта КАМАК при передаче данных, относящихся к каждому событию.

Функции синхронизации работы ЭВМ и электронной аппаратуры при использовании канала прямого доступа выполняются блоком КПД, блок-схема которого приведена на рис.6, а временные диаграммы, поясняющие его работу, - на рис. 7. Передача данных в ЭВМ из крейта регистрирующей электроники осуществляется контроллером С-004 /9/, что позволило реализовать сканирование крейта КАМАК с минимальными потерями времени.

3.6. Цветной телевизионный дисплей

Информация о распределении неоднородностей объекта по плотности может быть представлена на экране цветного телевизионного дисплея. Обычный черно-белый телевизионный экран позволяет различать около 10 градаций по яркости. Граница между зонами с различной яркостью достаточно легко определяется оператором. Однако идентификация зон яркости при черно-белом изображении затруднительна. Известно, что цветное изображение более информативно и различие двух соседних зон, отличающихся цветом, не вызывает затруднений. На основе имеющейся телевизионной системы РЕР-500/11/ был разработан и эксплуатировался во время экспериментов цветной телевизионный дисплей, блок-схема которого приведена на рис.8. Дисплей состоит из интерфейса /ТВ-208/, телевизионной системы РЕР-500 и драйвера телевизионного дисплея ТВ-201. С помощью блока ТВ-208 осуществляется связь с ЭВМ и управление ТВ системой РЕР-500.

Выполняются следующие команды КАМАК:

1. F₁₆ A₀ - запись в командный регистр.

Командный регистр содержит 12 разрядов и определяет режим работы дисплея. Функциональные значения разрядов командного регистра приведены в таблице.

2. F₁₆A₁S₁ - запись слова в регистр Х. В режиме Р по этой команде в регистр X записывается 16-разрядное слово, в котором $W_1 \div W_{10}$ определяют координату точки; $W_{13} \div W_{16}$ - значения яркости. В режиме L в ОЗУ блока записывается необходимое число /но не более 16 за один цикл/ 16-разрядных слов, в которых разряды ₩₁ ÷₩₈ содержат информацию о координатах точек изменения яркости, а разряды W 13 - W 16 характеризуют яркость на линии развертки между точками, координаты которых заносятся в 03У блока.

3. $F_{16}A_2$ - запись 10-разрядного слова в регистр $Y(W_1 \div W_{10})$.

Рис.6. Функциональная схема блока ДМА.

блока ДМА.

4.)

Z.

В режиме Р это координата точки X; в режиме L -начальный номер строки. Команды F₁₆A₁ и F₁₆A₂ используются для селективного стирания при соответствующем значении разряда командного регистра.

1

4. ${\rm F}_{25}{\rm A}_2$ -запуск цикла записи при значении "1" соответ-ствующего разряда командного регистра.

Таблица	
---------	--

				·			
№№ разряда	разряда			Выполняемые функции			
1,2	(1 <u>0</u> D1		Запись по точкам (P) Запись по строкам (L)	Способ	записи	
3,4		1 0		По команде F ₁₆ A ₂ S ₁	Способ	Способ иницииро- вания цикла записи	
3,4	() 1		По команде F ₂₅ A ₂ S ₁	вания ц		
5 6 ''1'' 7 8	в соответствую- щем разряде			Запись 1-ой строки Запись 2-х строк Запись 3-х строк Запись 4-х строк	Кратнос /число в цикл	Кратность записи /число строк в цикле/	
9,10		1 0		Выполнение одного цикла записи	Повторя циклов	Повторяемость циклов	
	() 1		Автоматическое выполнение после- довательности циклов			
11,12	1	0 1 0		Чтение памяти ТВ сис Запись в память ТВ с	темы истемы	емы Режим стемы работы РЕР-500	
	(D 1		Селективное стирание			

- 5. $F_9 A_0 S_2$ сброс блока. 6. $F_9 A_1 S_2$ сброс адресного счетчика 03У. 7. $F_9 A_3 S_2^*$ сброс PEP-500. 8. L -/запрос/ вырабатывается блоком после окончания цикла записи в РЕР-500.

Драйвер цветного телевизионного дисплея ТВ-201 предназначен для формирования сигналов цветности и видеосигнала для телеви-

зионного монитора. В основу работы блока положен принцип быстрого квантования уровня телевизионного видеосигнала. Функциональная схема приведена на рис.11. На рис.12 показано полученное распределение по плотности в фантоме из оргстекла /снимок с дисплея/. Технические данные дисплея: число воспроизводимых

3

Рис.12. Распределение плотностей /снимок с экрана телевизора/ фантома из оргстекла, помещенного в бокс с водой. Изменения плотности соответствуют 0,05 г/см²и 0,1 г/см² при общем количестве вещества 26,1 г/см². Видны отверстия диаметром 2,4,6 и 8 мм.

цветов - 8; число градаций по яркости в черно-белом варианте -16. Дисплей обеспечивает разрешение 512 точек x 512 линий в режиме записи по точкам и 256 точек x 512 линий в режиме записи по строкам.

4. ЗАКЛЮЧЕНИЕ

Созданная для ионной радиографии установка обеспечивает:

а/ высокую скорость набора информации /информация записывается на магнитную ленту для последующего анализа, а также обрабатывается в реальном масштабе времени/;

б/ представление информации об исследуемом объекте на цветном или черно-белом ТВ мониторе;

в/ высокое разрешение по плотности / < 0,1%/ с достаточно хорошим пространственным разрешением / \sim 2 мм/, поглощенная доза при этом - около 1 мрад.

Авторы признательны И.Н.Семенюшкину, Н.Н.Говоруну, М.Н.Хачатуряну, Б.Ситару, В.М.Головатюку, И.А.Тяпкину, В.А.Крамаренко, В.А.Смирнову, М.Н.Михайловой, А.Е.Московскому, В.А.5елякову, Ю.Г.Федулову, Н.П.Волкову, Н.Н.Тиханчеву за помощь в работе.

ЛИТЕРАТУРА

1. Tobias C.A. e.a. LBL Report No UCRL-17357, 1967. 2. Заневский Ю.В. и др. ОИЯИ, 14-11330, Дубна, 1978.

- 3. Анисимов Ю.С. и др. ОИЯИ, Р13-11872, Дубна, 1978.
- 4. Безногих Ю.Д. и др. ОИЯИ, 9-11765, Дубна, 1978.
- 5. Заневский Ю.В. и др. ОИЯИ, Р14-10410, Дубна, 1977.
- 6. Binnal E. IEEE, Trans., NS-20, No.1, 1973, p.367.
- 7. Анисимов Ю.С. и др. ОИЯИ, 18-11346, Дубна, 1978.
- 8. Иванов А.Б., Черненко С.П. ОИЯИ, 13-8093, Дубна, 1974.
- 9. Заневский Ю.В. и др. ОИЯИ, 13-8691, Дубна, 1975.
- 10. Никитюк Н.М. и др. ОЙЯИ, 10-7914, Дубна, 1974.
- 11. PEP-500, Lithocon State Image Memory /Scan Converter, Princeton Electronic Products, I nc., 1976.

Рукопись поступила в издательский отдел 13 июня 1980 года.

10

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индекс	Тематика
1.	Экспериментальная физика высоких энергий
2.	Теоретическая физика высоких энергий
3.	Экспериментальная нейтронная физика
4.	Теоретическая физика низких энергий
5.	Математика
6.	Ядерная спектроскопия и радиохимия
7.	Физика тяжелых ионов
8.	Криогеника
9.	Ускорители
10.	Автоматизация обработки экспериментальных данных
11.	Вычислительная математика и техника
12.	Химия
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций при низких энергиях
16.	Дозиметрия и физика защиты
17.	Теория конденсированного состояния
18.	Использование результатов и методов фундаментальных физических исследований

в смежных областях науки и техники

a.