

СООбЩЕНИЯ Объединенного института ядерных исследований дубна

4550/2-80

22/9-80

13-80-403

С.Г.Сазонов, В.Т.Толмачев

ДЕЙТЕРИЕВАЯ ТРЕКОЧУВСТВИТЕЛЬНАЯ МИШЕНЬ В ВОДОРОДНОЙ ПУЗЫРЬКОВОЙ КАМЕРЕ

Сазонов С.Г., Толмачев В.Т.

13-80-403

13-80-403

Дейтеривая трекочувствительная мишень в водородной пузырьковой камере

Рассматривается возможность ти использования дейтериевой мишени в водородном окружении. Целью данной работы является выбор рабочих параметров системы дейтерий - водород и формулирование основных требований к конструкции мишени. Приведен расчет необходимой толщины стенок мишени. Произведена оценка оптических искажений, связанных с конвекцией водорода вокруг мишени. Приведена принципиальная схема дейтериевой мишени в водородной камере и получены основные соотношения для расчета элементов расширительного устройства мишени. Результаты данной работы показывают теоретическую возможность технической реализации трекочувствительной мишени с выбранными параметрами режима и могут являться основой для разработки конструкции.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1980

Sazonov S.G., Tolmachev V.T.

Deuterium Track-Sensitive Target in a Hydrogen Bubble Chamber

The possibility of deuterium target applications in

Эксперимент по исследованию dd -взаимодействий с использованием установки "Людмила" требует для своего осуществления применения в качестве рабочей среды дейтерия в объеме всей камеры или хотя бы в ее части. В настоящее время в ряде лабораторий находят применение двухсредные системы, в которых часть объема, ограниченного упругой прозрачной коробкой, заполняется дейтерием или водородом, а остальной объем камеры - неон-водородной смесью ^(1,2,3).Такие системы позволяют проводить наиболее полный анализ взаимодействий. Помимо этого они обладают и рядом технологических достоинств. Из рассмотрения P-T диаграмм на <u>рис.1</u> видно, что при определенных концентрациях неона в смеси начальные условия / Т - температура, P - давление/ в обеих средах могут быть весьма близкими. При

этом, что принципиально важно, одновременная чувствительность дейтерия или водорода достигается за счет расширения объема мишени, обусловленного прогибом стенок при сбросе давления в неон-водородной смеси.

Для осуществления наполнения объема камеры дейтерием или части его неон-водородной смесью необходимо создание комплекса внешних технологических систем, включающих: систему сжатия и очистки, хранилище, систему эвакуации дорогих продуктов. Кроме того, требуется переделка некоторых систем самой камеры. Для этого необходимо выполнение значительного объема строительно-монтажных работ, а также большие финансовые затраты на

объединенцый институр адерных веследований БИБЛИСТЕКА

<u>Рис.2</u>. Р-Т диаграммы водорода и дейтерия с зонами чувствительности.

приобретение дорогого продукта, и следовательно, все это не может быть выполнено достаточно быстро. По этой причине признано целесообразным предпринять попытку создания дейтериевой трекочувствительной мишени в окружении водорода. Целью данной работы

является выбор рабочих

параметров системы дейтерий-водород и формулирование основных требований к конструкции мишени.

ВЫБОР РАБОЧИХ ПАРАМЕТРОВ СИСТЕМЫ ДЕЙТЕРИЙ-ВОДОРОД /МИШЕНЬ-КАМЕРА/

1

Поскольку кривые упругости паров дейтерия и водорода и границы их чувствительности не совпадают /<u>рис.2</u>/, в данном случае начальные параметры не могут быть одинаковы, как в хорошо зарекомендовавших себя системах водород-неонводород и дейтерий-неон-водород.

Исходя из результатов работы ⁷⁴⁷ о росте трековых пузырьков, из Р-Т диаграмм <u>рис.2</u>, а также имея в виду прочность камеры и мишени, принимаем для дальнейшего рассмотрения приведенную в таблице группу параметров.

Не имея возможности комментировать и обосновывать все выбранные параметры, отметим следующее: существенная разница температур требует проверки осуществимости такого режима; обеспечение приемлемого качества треков в обеих жидкостях может быть осуществлено при различных минимальных давлениях, т.е. при различных степенях расширения обеих жидкостей.

Разница температур в 3,75° между водородом и дейтерием предопределяет толщину стенок мишени. Термическое сопротивление стенок должно быть таким, чтобы перепад температур между наружной поверхностью мишени и окружающим водородом был не более 0,2°. В противном случае возможно закипание водорода на поверхности мишени в цикле расширения. Кроме того, выбранная толщина стенок должна обеспечить меобходимую жесткость мишени. Таблица

Жидкость Параметр	D_2		H ₂
Температура, К	31		27,25
Разница температур $(T_{D_2} - T_{H_2}), K$	E h	3,75	r or
Давление P_{p} /равновесное/, кгосм – Давление P_{-} /статическое/, кгосм – 2	2,4 5,9		5,9
Давление Р _{min} /минимальное/, кг.см ⁻²	2,5		2,8
Разница минимальных давлений			•
$(P_{\min}^{H_2} - P_{\min}^{D_2}), \ \kappa \Gamma \cdot c M^{-2}$		0,3	
Коэффициент роста пузырьков А,			
CM·C ^{-1/2}	0,4		0,3
Плотность пузырьков, см -1	20		45

II. ОПРЕДЕЛЕНИЕ НЕОБХОДИМОЙ ТОЛЩИНЫ СТЕНОК МИШЕНИ

Для того чтобы выбрать толщину стенок мишени, нужно определить температуры поверхностей стенок при заданных температурах в водороде и дейтерии и различной толщине стенки. Материал стенок - поликарбонат "Дифлон". Теплофизические коэффициенты данного материала не известны при нужных температурах, поэтому в расчетах приняты коэффициенты для полиметилметакрилата. В данном случае это можно оправдать тем, что известные коэффициенты материалов подобного класса весьма близки. Разница температур между водородом $T_{\rm H_2}$ и дейтерием $T_{\rm D_2}$ - общий температурный напор - $T_{\rm D_2}$ - $T_{\rm H_2}$ /<u>рис.3</u>/.

 $T_{D_2} - T_{CT.}^{D_2}$; $T_{CT.}^{H_2} - T_{H_2}$; $T_{CT.}^{D_2} - T_{CT.}^{H_2}$

-частные температурные напоры, которые нас интересуют и могут быть найдены через общий:

 $T_{D_2} - T_{CT}^{D_2} = (T_{D_2} - T_{H_2}) \cdot \frac{K}{a_{D_2}},$ $T_{CT}^{D_2} - T_{CT}^{H_2} = (T_{D_2} - T_{H_2}) \cdot \frac{\delta}{\lambda} \cdot K$,

Рис.3. Обозначение температур камеры и мишени.

$$T_{CT.}^{H_2} - T_{H_2} = (T_{D_2} - T_{H_2}) \cdot \frac{K}{\alpha_{H_2}}$$

α и К могут быть найдены как

$$\alpha = \frac{\sqrt{Nu \cdot \lambda}}{d}$$
, $K = \frac{1}{\frac{1}{\alpha D_0} + \frac{\delta}{\lambda C_m} + \frac{1}{\alpha H_0}}$

Nu - критерий Нуссельта:

 $Nu = c \cdot (Gr \cdot Pr)^n$

λ^{H2} Bτ.м⁻¹.град⁻¹

λ^D2 Вт.м⁻¹.град⁻¹

С^Н2 Дж.кг⁻¹. град ⁻¹

С^{D2} Дж.кг⁻¹.град⁻¹

η^H² кг.с⁻¹.м⁻¹

n^D2 Kr.c⁻¹·M⁻¹

р^H2 кг.м⁻³ .

р^D2 кг.м⁻³

β^Н2 град ^{−1}

 β^{D_2} rpag⁻¹

 $λ_{\rm CT}$. Βτ. m^{-1} , град $^{-1}$

đм

g * M·c⁻²

 $Gr = gd^3 \beta \Delta T / \nu^2$ - критерий Грасгофа, $Pr = c \cdot \eta / \lambda$ - критерий Прандтля, с и n - функции (Gr.Pr) ^{/5/}, где

а^{D2} Вт.м⁻².град⁻¹ - коэффициент теплоотдачи при свободной конвекции в дейтерии и водороде а^H2 Вт.м⁻².град⁻¹ соответственно; К Вт.м⁻².град⁻¹

- коэффициент теплопередачи:

- коэффициент теплопроводности водорода, равный 1.35.10⁻¹.
- коэффициент теплопроводности дейтерия /1.47.10⁻¹ /:
- ускорение свободного падения /9.8 M·c -2 /:
- коэффициент удельной теплоемкости водорода /15.10 ³/:
- коэффициент удельной теплоемкости дейтерия /8.10³/;
- коэффициент динамической вязкости водорода /8.10-6/;
- коэффициент динамической вязкости дейтерия /2·10⁻⁵ /:
- плотность водорода /60/:
- плотность дейтерия /148/:
- характерный линейный размер /ширина/ /0,15/;
- коэффициент термического объемного расширения водорода /13.10 -3/;

- коэффициент термического объемного расширения дейтерия /8.10⁻³ /:

- коэффициент теплопроводности стенки при температуре 28 K = $1.0.10^{-1}$:

δм - толщина стенки; $\nu = \eta / \rho$ - коэффициент кинематической вязкости /m².c⁻¹/; $\Delta T K$ - частный температурный напор между сведой и стенкой.

Поскольку ΔT и δ подлежат определению, решение будем ис- γ кать методом последовательных приближений. Второе приближение оказывается достаточным. По результатам расчетов построены зависимости частных температурных напоров от толщины стенки /рис.4/. На основании этих зависимостей выбираем толщину стенки мишени 12 мм; при этом температура стенки со стороны водорода будет на 0,15° выше температуры определяющего водорода, что удовлетворяет ранее заданным требованиям.

III. ОПТИЧЕСКИЕ ДИСТОРСИИ. ВЫЗЫВАЕМЫЕ ТЕРМИЧЕСКОЙ НЕОДНОРОДНОСТЬЮ СРЕДЫ

Тепловой поток через стенки мишени будет вызывать конвекцию водорода в зоне мишени. Это может привести к искажению треков. Необходимо произвести оценку величины возможных искажений. Рассмотрением этого вопроса занимался D.B.Thomas /6/Для жидкого водорода им была получена следующая зависимость:

 $\delta = 45.6 \cdot H^{7/8} \cdot L^{3/2}$

где H Вт.см⁻² - тепловой поток: L см - длина пути световых лучей в турбулентной области. В нашем случае Н составляет $3 \cdot 10^{-3}$ BT. cm⁻². Зависимость δ от величины L приведена на рис.5. Как видно, при имеющей место глубине погружения мишени и.следовательно, длине пути световых лучей в турбулентной жидкости 250 мм величина погрешности составляет около 30 мкм и может быть принята как допустимая.

IV. ОБЕСПЕЧЕНИЕ НЕОБХОДИМОЙ СТЕПЕНИ РАСШИРЕНИЯ **ДЕЙТЕРИЯ В МИШЕНИ**

Как мы уже отмечали ранее. для обеспечения приемлемого качества треков в мишени необходимо иметь минимальное давление

(7)

Рис.4.Зависимости перепада температур на стенке и окружающей жидкости от толщины стенки мишени.

Δ

3

Рис.5. Зависимость поперечного искажения треков от глубины хода светового луча в турбулентной жидкости при фиксированном тепловом потоке.

<u>Рис.6</u>. Принципиальная схема РУМ.

терия соответственно ΔP_{H_2} и ΔP_{D_2} величина постоянная, так же, как и P_{α} .

дейтерия, которое на 0,3 кг.см⁻² меньше, чем в водороде. Отсюда следует, что мишень должна быть снабжена расширительным устройством /РУМ/. РУМ могут быть выбраны различных типов. Возможно использование устройств, аналогичных применяемым на камерах с приводом и системой управления. Нам представляется такой путь нерациональным ввиду его сложности,

В /7/ предложены различные варианты обеспечения трековой чувствительности камеры и мишени с кинематической связью расширительных устройств. Предполагается использовать для создаваемой мишени РУМ, связанное гидравлической кинематической связью с системой расширения пузырьковой камеры. Рассмотрим следующую схему РУМ и определим основные ее характеристики, обеспечивающие выбранные параметры режима /рис.6/: Р₁ - давление в мишени, Pg - опорное давление; P_3 - давление в камере; F_1 и F₂ - площади мембран.

Условие равновесия такой системы:

 $\Sigma X = 0,$ to ectb

$$P_{1}F_{1} + P_{2}F_{2} - P_{2}F_{1} - P_{3}F_{2} = 0, /1/$$

$$P_{1} = P_{2} + \frac{F_{2}}{F_{1}}(P_{3} - P_{2}). /2/$$

В предварительных расчетах принимается, что жесткость мембран незначительна. Пусть требуемый перепад давления для обеспечения чувствительности водорода и дей- $\Delta P_{\rm H_2}$ и $\Delta P_{\rm D_2}$, примем, что $({\rm F_1}-{\rm F_2})^-$

6 3

Условие равновесия при расширении:

$$P'_1 = P_2 + \frac{F_2}{F_1} (P'_3 - P_2).$$
 /3/

Вычитая из /2/ уравнение /3/, получим

$$P_{1} - P_{1}' = P_{2} + \frac{F_{2}}{F_{1}}(P_{3} - P_{2}) - P_{2} - \frac{F_{2}}{F_{1}}(P_{3}' - P_{2})$$

$$\Delta P_{D_{2}} = \frac{F_{2}}{F_{1}} \cdot \Delta P_{H_{2}}.$$
Отсюда

$$\frac{F_{2}}{F_{1}} = \frac{\Delta P_{D_{2}}}{\Delta P_{H_{2}}}$$
и опорное давление

$$P_{1} - \frac{\Delta P_{D_{2}}}{\Delta P_{H_{2}}} \cdot P_{3}$$

$$\mathbf{P}_{2} = \frac{\mathbf{P}_{1} - \frac{\Delta \mathbf{P}_{D_{2}}}{\Delta \mathbf{P}_{H_{2}}} \cdot \mathbf{P}_{3}}{1 - \frac{\Delta \mathbf{P}_{D_{2}}}{\Delta \mathbf{P}_{H_{2}}}},$$

Для нашего случая имеем

3 1

$$\Delta P_{D_2} = 3.4 \qquad \text{M} \quad \Delta P_{H_2} = 3.1 \quad /\text{CM. } \underline{\text{таблицу/}},$$
$$\frac{F_2}{F_1} = \frac{3.4}{3.1} = 1.1,$$
$$P_2 = \frac{5.9 - 1.1 \cdot 5.9}{1 - 1.1} = \frac{-0.58}{-0.1} = 5.8 \text{ Kr. } \text{CM}^{-2}.$$

Таким образом, мы получили, что при заданных статических давлениях в мишени и камере отношение эффективных площадей мембран должно быть 1,1 и опорное давление без заметной погрешности может быть принято $P_{2} = 5.9$ кг.см⁻².

Считая далее, что геометрия и размеры мишени заданы требованиями физической задачи, определим необходимую степень расширения дейтерия и в зависимости от этого - связь между эффективной площадью подвижного элемента РУМ и его ходом. Начальный объем мишени

 $V_{H} = \ell \cdot b \cdot h$.

Для обеспечения заданного сброса давления $\Delta P_{D_2} = 3,4 \text{ кг} \cdot \text{см}^{-2}$ необходимо изменение первоначального объема согласно формуле $\Delta V = \beta \cdot V_{\text{II}} \cdot \Delta P$.

При расширении жидкостей в камере и мишени перепад давления на стенках мишени будет расти от 0° до 0,3 кг.см⁻² вследствие

7

работы РУМ. Следовательно, стенки мишени будут прогибаться внутрь, уменьшая начальный объем. При выборе параметров РУМ этот эффект необходимо компенсировать. Считая, что форма прогиба стенок близка к цилиндрической, изменение объема за счет прогиба стенок будет равно

$$\Delta V_1 = 2 \cdot \frac{1}{2} \cdot b \cdot \ell \cdot w,$$

и тогда РУМ должно обеспечивать изменение объема:

$$\Delta V_n = \Delta V + \Delta V_1,$$

злесь и ранее l - Длина мишени, b - ширина мишени, h - высота мишени, β - адиабатический коэффициент сжимаемости, w - прогиб стенки:

$$w = \frac{0,1422 \cdot P \cdot b^4}{E \cdot \delta^{-3} \cdot (1+2,21 \, \text{K}^3)}$$

 δ – толщина стенки, E – модуль упругости, $K=b/\ell$. F_{adth} - эффективная площадь подвижного элемента РУМ и S - его ход должны быть связаны условием

 $F_{9\varphi\varphi} = \frac{\Delta V_n}{S} = \frac{\beta \cdot \ell \cdot b \cdot h \cdot \Delta P + b \cdot \ell \cdot w}{S} = \frac{\ell \cdot b [\beta \cdot \Delta P \cdot h + w]}{S},$ При $\ell = 1000$ мм, b = 150 мм, h = 60 мм, $\delta = 12$ мм $\Delta V_n = 93$ см³ и F_{эфф.=}93/S · см². Величины F_{эфф.} и S выбираются исходя из прочностных и конструктивных соображений.

ЗАКЛЮЧЕНИЕ

Полученные результаты показывают теоретическую возможность технической реализации трекочувствительной мишени с выбранными параметрами режима и могут являться основой для разработки конструкции.

питература

8

- 1. Horlitz G. et al. Nucl.Instr.& Meth., 1969, v.68, 2,p.213. 2. Leutz H., Williams P.R. RL-73-026, Chilton, April 1973.
- 3. Fisher C.M. RL-73-53.Chilton, May 1973.
- 4. Wolff S. DESY, B-1-1, Hamburg, Februar 1969.
- 5. Малков М.П. и др. Справочник по физико-техническим основам криогеники. "Энергия". М., 1973.
- 6. Thomas D.B. CERN, 67-26, v.1, August 1967.

St.

7. Козубский Э.В. и др. Пузырьковая камера с двумя следочувствительными объемами. Авторское свидетельство СССР №661459, GO1 5/06 от 9.03.77 г. Бюлл. ОИПОТЗ, 1979, №17, с.190. Рукопись поступила в издательский отдел

10 июня 1980 г.