ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

C344,1M

13 - 7238

4431/2-73 Б.М.Головин, Л.А.Пермякова

ВЛИЯНИЕ ВХОДНОГО "ОКНА" НА ЭНЕРГЕТИЧЕСКОЕ РАЗРЕШЕНИЕ КРЕМНИЕВЫХ ПОВЕРХНОСТНО-БАРЬЕРНЫХ ДЕТЕКТОРОВ

ЛАБОРАТОРИЯ ЯДЕРНЫХ ПРОБЛЕМ

13 - 7238

Б.М.Головин, Л.А.Пермякова

ВЛИЯНИЕ ВХОДНОГО "ОКНА" НА ЭНЕРГЕТИЧЕСКОЕ РАЗРЕШЕНИЕ КРЕМНИЕВЫХ

поверхностно-барьерных детекторов

Доклад на Всесоюзном совещании "Детекторы ядерных излучений" (Москва, июнь 1973 г.)

> объеденезный пистепут ядерных беследованей БИБЛИСТЕНА

В случае прецизионных измерений энергии ядерного излучения с помощью полупроводниковых поверхностнобарьерных детекторов возникает необходимость учитывать разброс потерь энергии во входном "окне" счетчика. Это особенно важно при регистрации короткопробежных частиц / *a* -частиц, тяжелых ионов/ и X - лучей низкой энергии, т.к. энергия, потерянная ионизирующей частицей во входном "окне" счетчика, не участвует в формировании сигнала.

Влияние входного "окна" на энергетическое разрешение кремниевых детекторов с p-n -переходом рассматривалось в работе /1/ для точечного источника в условиях с коллимацией и без коллимации пучка α -частиц. Задача решена аналитически с использованием эмпирических формул для входного "окна", состоящего из однородного слоя кремния.

В настоящей работе рассчитаны спектры потерь энергии во входном "окне" кремниевых поверхностнобарьерных детекторов. Вычисления выполнены для различных значений диаметров детектора и источника и расстояния между ними. Кроме геометрического фактора, учитывается также:

1/ разброс углов падения частиц на детектор;

2/ статистические флюктуации потерь энергии во входном "окне";

3/толщина и структура входного "окна" детектора, которое рассматривается как поверхностный слой, состоящий из:

а/ однородного слоя напыленного золота порядка 20 ÷ 100 мкг/см² и б/ дополнительного, "мертвого" слоя кремния, толщина которого зависит от удельного сопротивления исходного материала и напряжения, приложенного к счетчику /2, 3/.

Результаты таких расчетов позволят более обоснованно формулировать требования к удельному сопротивлению исходного материала, толщине золотого электрода, размерам детектора и к выбору геометрии эксперимента. Вычисления проводились по методу статистических испытаний, что дает возможность получать спектры энергетических потерь для произвольной геометрии опыта.

Значения толщины рассматриваемых слоев золота и кремния как составных частей входного "окна" детектора представлены в табл. 1. Значение плотности золота в тонкой пленке взято равным 19,32 г/см³, т.е. равным значению плотности массивного металла *.

Необедненный слой кремния под золотым электродом рассматривался как слой кремния с плотностью 2,329 г/см^{3/5/}Химический состав этого слоя во многом определяется химической обработкой поверхности кремниевой пластины в процессе травления и условиями последующего ее хранения. Механизм его образования остается до конца не выясненным. При определении зависимости толщины "мертвого" слоя кремния от удельного сопротивления исходного материала хорошее согласие теории с экспериментом получается в предположении о диффузии кислорода внутрь кремниевого кристалла, где кислород действует как акцептор /^{3/}. Не чисключается также, что кислород остается адсорбированным на поверхности и образует инверсионный слой /^{3/}.

* Согласно /4/, плотность металла в тонких слоях резко снижается и может быть в 2 раза меньше плотности массивного металла в зависимости от условий получения пленки. Однако результаты экспериментов часто оказываются недостоверными из-за трудностей при измерениях очень тонких пленок.

Геометрия опыта

На рис. 1 показана схема расположения поверхностно- барьерного детектора и источника моноэнергетических *а*-частиц. Детектор раднусом (R_{u}) и источник раднусом (R_{u}) лежат в параллельных плоскостях на расстоянии (H) друг от друга так, что центры их находятся на одной прямой.

Входное "окно"(R) детектора состоит из слоя золота толщиной R_{A_u} и слоя кремния толщиной R_{S_i} /см. рис.1а/.

Введем максимальное значение полярного угла θ_k , такое, что, вылетая из источника под углом $\theta \leq \theta_k$, частица попадает на детектор. Этот угол определяется выбранной геометрией детектор-источник /рис. 1/ и вычисляется как

$$\theta_{k} = \operatorname{arc} tg \left(\frac{R_{p} + R_{u}}{H} \right), \qquad /1/$$

Рис. 1. Схема расположения поверхностно-барьерного детектора и источника *а*-частиц: 1 - источник радиусом R_{i} ; 2 - детектор радиусом R_{g} с рабочей поверхностью радиусом R_{p} ; H - расстояние детектор - источник; R - входное окно детектора.

где R_p - радиус рабочей поверхности детектора, R_u радиус источника, H - расстояние детектор-источник. Пусть a -частица с начальной кинетической энергией E_0 имеет пробег R_0 в веществе детектора. В общем случае длина пути (X) a -частицы в мертвом слое детектора может принимать любые значения в интервале от R /когда частица летит по нормали к поверхности / до R_0 . Для выбранного угла θ_k предельные значения длины пути частицы в мертвом слое детектора определяются следующим образом:

$$X_{R} = R$$
,

 $X_{\theta_k} = R/\cos \theta_k$.

Для любого промежуточного угла вылета *а*-частицы /рис. 1б/ длина пути (X) в мертвом слое детектора будет равна:

$$X = R/\cos\theta. \qquad (3)$$

/2/

Средние потери энергии во входном "окне"

Пройдя слой вещества (X) в "мертвом" слое, *a*-частица выйдет из него со средней энергией *E*. Средняя потеря энергии частицы в мертвом слое детектора

$$\Delta E = E_0 - E.$$

При определении величины (ΔE) можно использовать таблицы пробег - энергия α -частиц для золота и кремния /6.7/ полученные на основе формулы Бете-Блоха.

Для входного "окна", состоящего из слоя золота и "мертвого" слоя кремния, величина (ΔE) для угла (θ) вылета α -частицы находится, как сумма средних потерь энергии в золоте и в кремнии при одном и том же угле (θ), в предположении, что процессами рассеяния α -частицы во входном "окне" можно пренебречь. С учетом того, что потери энергии в "мертвом" слое не всегда малы по сравнению с начальной энергией частицы, средиие значения этих потерь определялись через соотношение пробег-энергия по формуле

$$\Delta E = \Delta E_{Au} + \Delta E_{Si} =$$

$$= \{ E_0 < R_0 > -E < R_0 - R_{Au} / \cos \theta > \} +$$
/5/

+
$$\{E_0 < R_0 - R_{Au} / \cos \theta > -E < R_0 - R_{Au} / \cos \theta - R_{Si} / \cos \theta > \}.$$

Предельные значения средних потерь энергии во · входном"окие "детектора равны:

$$\Delta E_1 = E_0 - E < R_0 - R > ,$$

$$\Delta E_2 = E_0 - E < R_0 - R / \cos \theta_k > ,$$

(6/

где так, же, как и в /6/, $R = R_{Au} + R_{Si}$.

В этих выражениях *E* < X> обозначает энергию *a* -частицы с пробегом X в рассматриваемом веществе.

Флюктуации потерь энергии

Как известно, флюктуации энергетических потерь заряженных частиц в тонких слоях вещества описываются функцией Вавилова /8.9/, вид которой меняется в зависимости от численного значения параметра κ от функцин Ландау./10/ при малых κ до функции Гаусса при k >> 1. Параметр κ может быть найден в таблицах/11/, где он рассчитан по формуле/11/.

 $\kappa = \frac{2\pi e^4}{mc^2} \frac{z^2}{\epsilon_m \beta^2} \frac{NZ}{A} X.$ (7/

Здесь X - толщина слоя поглотителя; z - заряд падающей частицы; $\beta = v/c$ - скорость частицы; ϵ_m - максимальная величина энергии, переданная электрону налетающей частицей; Z - атомный номер вещества поглотителя;

6

Si	d= 2,329	9 г/см ³	Au $d = 19,32 \ \Gamma/cm^{-3}$					
R _{Si} (ыкг с	м-2) R _{si} (мк)) <u> </u>	RAU (NKT CN	-2) R _{Au} (NK) к			
4,658	0,02	0,196	19,32	0,010	0,811			
9,316	0,04	0,391	28,98	0,015	1,217			
13,974	0,06	0,587	38,64	0,020	I,623			
18,632	0,08	0,783	48,30	0,025	2,029			
			57 96	0 030	2 434			
23,290	0,10	0,978						
			67,62	0,035	2,840			
69,870	0,30	2,935						
			77,28	0,040	3,246			
II6,450	0,50	4,890						
			86,94	0,045	3,651			
163,030	0,70	6,847						
		0 800	96,60	0,050	4,057			
232,900	I.00	9,782	I06.26	0.055	4, 463			
145,000	2.00	19,564	TTE 02	0.000	1, 000			
462,000	• 2,00	20,961	115,92	0,060	4,869			
698,700	3,00	e 	135,24	0,070	5,680			
•			154,56	0,080	6,492			
			173,88	0,090	7,303			
			193,20	0,100	8 , II 4			
na fel de la faction de la contra de la contra En la contra de la c			289,80	0,150	12,172			

Таблица 1

А - атомный вес вещества поглотителя: N - число Авогадро.

В табл. 1 представлены значения параметра к соответствующие рассматриваемым толщинам золота и кремния. Как видно из таблицы, для используемых толщин золота и кремния параметр к лежит в промежуточной области $0 < \kappa < 10$, которая описывается функцией распределения Вавилова/9/. Использование в этих условиях гауссовского приближения, строго говоря, не оправдано. Однако сделанные нами оценки показали, что суммарная вероятность потерь энергии, не описываемых гауссовским распределением для наименьших из рассматриваемых толщин "окна" кремния $/R_{st} = 0.02$ мк, к = 0,196/, не превышает 15%. Поэтому для упрощения расчетов спектр ионизационных потерь считался гауссовским во всей рассматриваемой области толщин "мертвых" слоев кремния и золота.

Метод расчета

Схема расчета состоит в прослеживании траектории а -частицы с момента вылета с поверхности источника до выхода ее за пределы входного "окна" детектора и вычислении ее энергетических потерь. Влияние толщины источника не учитывается. Однако при необходимости эта характеристика эксперимента также может быть учтена.

Для разыгрывания точки вылета а -частицы и направления ее движения использовалась последовательность случайных чисел $\{\mu\}$, равномерно распределенных в интервале [0,1], генерируемых стандартной программой. Для учета статистических флюктуаций потерь энергии использовались случайные числа, распределенные по нормальному закону. Вычисления велись в следующей последовательности:

1. С помощью 2-х случайных чисел $\{\mu_1, \mu_2\}$ разыгрывается точка (0') вылета а -частицы. Координаты ее в плоскости источника лежат в пределах $-R_{u} < O'_{x}$,

$$O'_{x} = 2R_{u} \mu_{1} - R_{u},$$

$$O'_{y} = 2R_{u} \mu_{2} - R_{u}.$$

2. Разыгрываются углы θ и ϕ , определяющие направление вылета частицы. Предполагая, что вероятность вылета частицы с поверхности источника не зависит от ее направления, можно показать, /12/ что соз θ будет равномерно распределен в интервале [0,1]. Формулы для разыгрывания углов:

/8/

$$cos \theta = \mu_3,$$

$$\phi = 2\pi\mu_a,$$
/9/

где μ_3 и μ_4 - случайные числа, равномерно распределенные на интервале [0,1].

3. Находятся координаты точки (P) / см. рис. 16/ пересечения траектории *а* -частицы с плоскостью детектора:

$$P_{x} = H tg \theta \cos \phi + O'_{x},$$

$$P_{y} = H tg \theta \sin \phi + O'_{y}.$$
(10)

4. Проверяется, принадлежит ли точка P(x, y) поверхности детектора. Если

$$R_{g}^{2} - (P_{x}^{2} + P_{y}^{2}) > 0$$
, /11/

то частица попала на детектор и для нее по формуле /5/ находится средняя потеря энергии (ΔE) в "мертвом" слое детектора. Величина E(X)определялась с помощью линейной интерполяции таблиц пробег-энергия.

5. Истинные значения потерь энергии (ΔE_N) находятся с учетом статистических флюктуаций, описываемых нормальным законом:

$$p(\Delta E_N) = \frac{1}{\sqrt{2\pi \sigma}} e^{-\frac{(\Delta E_N - \Delta E)^2}{2\sigma^2}} / 12/$$

со стандартом: /13/

$$\sigma = \sqrt{0,1536} \frac{Z}{A} z^2 \left[\frac{(1-\frac{1}{2}\beta^2)\epsilon_m}{\beta^2} \right] X, \qquad (13/$$

где X - толщина слоя поглотителя; Z - атомный номер вещества поглотителя; A - атомный вес поглотителя; z заряд падающей частицы; $\beta = v/c$ - скорость частицы; ϵ_m - максимальная величина энергии, переданная электрону налетающей частицей.

Предельные значения потерь энергии /6/ с учетом статистических флюктуаций вычисляются по формуле

$$\Delta E'_{1} = \Delta E_{1} + 3\sigma,$$

$$\Delta E'_{2} = \Delta E_{2} - 3\sigma.$$
 /14/

Программа составлена так, что описанная последовательность операций /1 \div 5/ выполняется для одного случайного испытания, которое затем повторяется N раз. Результаты "опытов" накапливаются. Строится спектр распределений ΔE_N . Средняя квадратичная ошибка этого распределения

$$\Delta' = \sqrt{\frac{\sum (\Delta E_N - \Delta E)^2}{N - 1}} , \qquad /15/$$

умноженная на коэффициент 2,35 /для гауссовской формы спектра/ /14/, характеризует вклад в энергетическое разрешение детектора, обусловленный потерями энергии в его входном "окне":

$$\Delta = 2,35 \cdot \Delta'.$$

/16/

10

Обсуждение результатов

На рис. 2 показаны изменения величины Δ/κ эв/ при регистрации *a* -частиц с энергией 5 Мэв в зависимости от толщины золотого электрода при условии, что "мертвый" слой кремния под ним отсутствует. Это соответствует случаю использования низкоомного *n* – Si с удельным сопротивлением меньше 1000 ом.см. Геометрия опыта: $R_{\mu} = 5$ мм; площадь детекторов равна 1 и 5 см²; расстояние детектор-источник (*H*) составляет 20 мм, 10 мм, 5 мм.

"Мертвый" слой кремния под золотым электродом /случай использования n - Si с удельным сопротивлением более 1000 ом.см/ дает заметный вклад в потери энергии во входном окне. Значения величины Δ /кэв/

Рис. 2. Значения величины Δ в зависимости от толщины золотого электрода на детекторе: кривые 1,2 соответствуют H = 20 мм; кривые 3,4 - H = 10 мм; кривые 5,6 - H = 5 мм.

Рис. 3. Значения величины Δ в зависимости от толщины "мертвого" слоя кремния при постоянной толщине золотого электрода, равной 58 мкг/см² : кривые 1,2 соответствуют H = 20 мм; кривые 3, 4 - H = 10 мм; кривые 5,6 - H = 5 мм.

для а -частиц с энергией 5 Мэв в зависимости от толщины "мертвого" слоя кремния при постоянной толщине золотого электрода, равной 58 мкг/см², показаны на рис. 3. Геометрия опыта: $R_{\rm g} = 5$ мм; площадь детекторов равна 1 и 5 см²; расстояние детектор-источник (*H*)составляет 20 мм, 10 мм, 5 мм.

Приведенные в настоящей работе результаты дают возможность оценить нижний предел энергетического разрешения кремниевых поверхностно-барьерных детекторов, который может быть получен для данной геометрии детектор-источник при заданной толщине и структуре входного " окна". Предельные разрешения детекторов, обусловленные потерями во входном "окне" при регистрации *a* -частиц с энергией 5 Мэв в нескольких типичных геометриях опыта, приведены в табл. 2.

12

13

ЭВ В НЕСКОЛЬКИХ ТИПИЧНЫХ	S = 5 cm 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$, 2,4I I4,37	6,66 42,54	I5,59 I02,63	I,82 I0,50	5,50 34,45	I4,62 92,74	
а-частиц с энергией 5 Мэв в нескольких типичн геометриях опыта s=1 см 2	2	,5 MK Si + $R_{Au} = 0,03$ MK 3 MK Au		I 6,66	7 IS,59	0 I,82	5 5,50	I 4,62	
	S = 1 cM	$A_{u}^{=} 0.03 \text{ MK}$ $R = 0$ + 0.0	I,25 6,2	3,23 I9,6	8,01 [,] 53,6	0,80 2,7	I,54 8,7	4,47 28,8	
	/ww/H	2	20	Ū	Ŋ	20	I O	Ъ	
		Ð	с С	ß	Ś	Точечный	источник		

Таким образом, неопределенность длины пути частицы во входном "окне" полупроводникового детектора и флюктуации ее энергетических потерь в нем наклапывают существенные ограничения на предельно достижимые характеристики этих приборов.

Авторы выражают благодарность С.М.Елисееву. Б.П.Осипенко, В.Г.Сандуковскому, Ф.Ш.Хамраеву за полезные обсуждения.

Литература

1. G.Roux. Nucl, Instr. and Meth., 33, 329 (1965).

2. G.Forcinal, P.Siffert, A.Coche. IEEE Trans., NS-15, 275 (1968).

- 3. Е.Береги и др. Препринт ОИЯИ, Р13-683О, Дубна, 1972.
- 4. В.В.Слуцкая. Тонкие пленки в технике СВЧ. "Советское радио". Москва, 1967.
- 5. I.Henins, J.A.Bearden. Phys.Rev., 135A, 890 (1964).
- . 6. L.C.Northeliffe and R.F.Shilling. Nucl. Data Tables. USA Energy Comn, A7, 233 (1970).

7. H.Bichsel, C.Tschalaer, UCRL-17663 (1968).

- 8. П.В.Вавилов. ЖЭТФ, 32, 920 /1957/.
- 9. S.M.Seltzer, M.J.Berger. Studies in Penetration of Charged Particles in Matter, NSA-NRC-Publication, No. 1133, 1964.

10. L.Landay. J.Phys.USSR, 8, 201 (1944).

- 11. Б.М.Головин, Л.А.Кулюкина, С.В.Медведь, П.Павлович. П.Шулек. Флюктуации ионизационных потерь /Таблицы/. Препринт ОИЯИ, Р1-3190, Дубна, 1967.
- 12. И.М.Соболь. Метод Монте-Карло, Наука,

Москва. 1972.

- 13. В.И.Калашникова, М.С.Козодаев. Детекторы элементарных частиц. Москва, "Наука", 1966, стр. 30.
- 14. Дж. Дирили, Д. Нортроп. Полупроводниковые счетчики излучений. Москва, "Мир", 1966.

Рукопись поступила в издательский отдел 8 июня 1973 года.

15

14

ЭВ входном

BO

энергии

Предельны

а-частиц потерями

Иdп

обусловленны регистраци

> K3B/ окне"

детекторов

Таблица разрешения