

13 - 6369

2941-7

А.Д.Кириллов, В.А. Кузнецов, С.А. Нежданова, И.Н. Семенюшкин

РЕКОНСТРУКЦИЯ КАНАЛОВ ВТОРИЧНЫХ ЧАСТИЦ НА СИНХРОФАЗОТРОНЕ ЛВЭ ОИЯИ

13 - 6369

А.Д.Кириллов, В.А.Кузнецов, С.А.Нежданова, И.Н. Семенюшкин

РЕКОНСТРУКЦИЯ КАНАЛОВ ВТОРИЧНЫХ ЧАСТИЦ НА СИНХРОФАЗОТРОНЕ ЛВЭ ОИЯИ

Развитие физики элементарных частиц в значительной степени связано с созданием целой серии ускорителей заряженных частиц на высокие (Беркли, Аргон, Нимрод, Дубна, ИТЭФ) и сверхвысокие (ЦЕРН, Брукхейвен, ИФВЭ, Батавия) энергии.

Громадные средства, затрачиваемые на сооружение ускорителей, могут быть оправданы высокой эффективностью использования таких ускорителей для физических исследований.

Рациональное размещение оборудования, формирование и транспортировка заряженных частиц имеют первостепенное значение для повышения эффективности использования ускорителя, и этому вопросу в настоящее время уделяется огромное внимание.

С увеличением энергии ускоренных частиц формирование пучков превращается в достаточно сложную проблему – растет протяженность каналов, их насыщенность магнитно-оптическими элементами и потребляемая ими мощность. При расчетах и проектировании каналов существенную роль начинают играть экономические соображени , так как стоимость каналов вместе с экспериментальным оборудованием стаковится сравнимой со стоимостью самого ускорителя.

Эффективность работы ускорителя находится в прямой зависимости от количества выполняемых экспериментов одновременно в одном цикле ускорения. При этом, естественно, предполагается, что для каждого эксперимента созданы достаточно благоприятные условия проведения.

Несколько лет назад, когда еще не была решена проблема вывода ускоренного пучка и источником вторичных частиц являлись мишени, размещаемые внутри камеры, одновременно проводилось в лучшем случае не более четырех экспериментов.

Вывод ускоренного пучка непосредственно в экспериментальные залы позволил значительно увеличить количество экспериментов. Стало возможным использовать одну мишень для формирования двух-трех пучков вторичных частиц или делить интенсивность выведенного протонного пучка на несколько мишеней. Таким образом удалось повысить количество выполняемых на ускорителях экспериментов более чем в два раза.

1. Каналы от внутренних мишеней

Наличие выведенного пучка не исключает проведения экспериментов с частицами, получаемыми от внутренних мишеней. Схема реконструкции системы каналов в измерительном павильоне представлена на рис. 1.

Предполагается создать два канала (№ 20 и № 21), формирующих пучки *п* -мезонов от внутренних мишеней в диапазоне импульсов от 3 до 7 Гэв/с.

Оптическая схема канала № 20 показана на рис. 2. Первый объектив (дублет из линз **Q**₁ , **Q**₂ - **Q**₃ , собранный по схеме **DФ** в горизонтальной плоскости), формирует в обеих плоскостях изображение на импульсном коллиматоре.

Импульсный анализ осуществляется магнитным полем ускорителя. Дисперсионное смещение на коллиматоре – 10 мм. Второй объектив (линзы типа МЛ-16) переносит изображение на 10 м, от последней линзы. Угол поворота частиц в магните M_2 ($\phi_2 = 0.14$ рад.) выбирается из условия компенсации линейной дисперсии в конечном изображении. Оптическая схема канала № 21 (рис. 3) выбиралась из условия формирования пучков π -мезонов с малой расходимостью (≤ 1 мрад.).

Первый объектив (Q_1 , $Q_2 - Q_3$) формирует изображение на импульсном коллиматоре и линейное дисперсионное смещение ($D_{\mu\kappa}$) на

Рис. 2. Оптическая схема каналов Nº 20.

нем определяется разностью начальной дисперсии $Д_0$ и дисперсии, вызванной отклонением пучка в M_1 - на угол - ϕ_1 , т.е.

$$D_{\rm WK} = D_0 V_{1,2} - \phi_1 L_1$$

1

где V_{1,2} - коэффициент увеличения первого объектива; L₁ - расстояние от центра M₁ до изображения (центр ИК).

Входным объективом в вертикальной плоскости является триплет квадрупольных линз (рис. 3), собранных по схеме ДФД (Q_1 , $Q_2 - Q_3$, Q_4). Он формирует промежуточное действительное изображение на ограничительном коллиматоре, установленном внутри линзы Q_5 .

Для изменения знака дисперсии при работе канала на направлении Б дублет линз **Q₄**, **Q₅** формирует в горизонтальной плоскости промежуточное изображение в фокусе конечного объектива. Поворот частиц в **M**₂ на угол $\phi_2 = 0,141$ рад компенсирует угловую дисперсию в пучке. В вертикальной плоскости фокусное расстояние дублета **Q**₆ , **Q**₇ подобрано таким образом, чтобы сформировать также параллельный пучок.

При повороте частиц на направление А для компенсации угловой дисперсии изменения знака дисперсии не требуется, и поэтому промежу – точное изображение дублетом линз Q4, Q5 не формируется, а пучок делают слабо сходящимся.

Угол поворота в магните M₂ ($\phi_2 = -0,135$ рад.) также выбирается из условия компенсации угловой дисперсии.

Параметры пучков представлены в таблице 1.

Транспортировка частиц осуществляется в вакуумпроводе, имеющем на выходе из магнитов в измерительном павильоне окна с майларовыми диафрагмами. В канале № 20 в районе импульсного коллиматора предусматривается разрыв в вакуумпроводе – коллиматор устанавливается вне вакуумной трубы.

В канале № 21 все коллиматоры размещаются внутри вакуумпровода. Вакуумпровод отделяется от камеры ускорителя шибером и майларовой диафрагмой.

2. Система каналов на выведенном пучке

Медленный вывод ускоренного пучка из синхрофазотрона осуществляется под углом 4° 48 41 ["] к прямолицейной секции (направление 1). С помощью магнита M (типа СП-12) первичный пучок может быть отклонен на направление II (ϕ = -0,105 рад.), квартет квадрупольных линз (типа 20к200) формирует на этом направлении изображение F_2 (на расстоянии 630 см от амбразуры) в измерительном павильоне. В этом районе предполагается создать мишенную станцию (рис. 1). Размер изображения в F_2 - 3 x 3 мм². Магнит (типа СП-57) M₁ служит для выделения по направлениям каналов №22 и №23 частиц с заданными импульсами (0,5 Гэв/с и 2,0 Гэв/с). Выведенный протонный пучок транспортируется до F_2 в вакуумпроводе, оканчивающемся окном с майларовой диафрагмой.

№№ Параметры пучка п/п	Канал № 20	Канал № 21
1. Длина канала	42 м	42 м
2. Максимальный импульс	7,0 Гэв/с	7,0 Гэв/с
3. Импульсный интервал (%)	<u>+</u> 1	<u>+</u> 1
4. Угол рождения частиц в мишени (рад.)	0	0
5. Телесный угол (стерад.)	5.10-4	3.10-4
8. Дисперсионное смещение на импульсном коллиматоре на (1% Δ <i>P / P</i> ₀)	10 мм	10 мм
7. Коэффициент увеличения системы:		
а) вертикальная плоскость	-	-
б) горизонтальная плоскость	-	-
В. Размер оконечного изображения:		
а) вертикальная плоскость	20 мм	~ 60 мм
б) горизонтальная плоскость	3 0 мм	~ 80 мм
Э. Расходимость частицы в пучке:		
а) w_ (м. рад.)		≤ 1
б) ω _Γ (м. рад.)		≤ 1
10. Поток <i>п</i> - мезонов при <i>P</i> ₀ = 4 Гэв/с на 10 ¹⁰ сброшенных на мишень протонов	~1,5.10 ⁴	~1,0.10 ⁴

Таблица 1

Перед фокусом F_2 должна быть расположена система индикации первичного и вторичных пучков и система наведения пучка на мишень. После взаимодействия с мишенью первичный пучок направляется в ловушку, рассчитанную на подавление полной интенсивности (10¹²). Пучок транспортируется в вакуумпроводе.

В межполюсном пространстве раздаточного магнита M₁ (полюс круглый, диаметром 90 см) устанавливается фигурный коллиматор с отверстиями, соответствующими направлению и входной апертуре протонного пучка и каналов №22 и №23.

Предусматривается перенос фокуса в **F**₃ на расстояние ~ 830 см от амбразуры, где будут устанавливаться мишени для получения вторичных частиц в канале №26.

а) Канал №22.

Канал предназначается для формирования обогащенных пучков K⁻ – мезонов с импульсом до 0,6 Гэв/с. Размещение оборудования и защиты показано на общей схеме (рис. 1). Оптическая схема канала приведена на рис. 4. Канал имеет одну ступень электростатической сепарации. Пластины сепаратора – длиной 275 см, с зазором – 8 см. Напряженность поля – 40 кв/см.

Рис. 4. Оптическая схема канала № 22.

Первый дублет линз, включенных по схеме ФД в вертикальной плоскости (плоскость сепарации), формирует параллельный пучок, а линза Q_3 переносит изображение на массовую щель. Для сокращения длины канала компенсирующие магниты, т.е. магниты, компенсирующие отклонение частиц с оси под действием электростатического поля сепаратора, не применяются, поэтому пластины сепаратора и линза Q_3 выставляются по наклонной оси (угол наклона a = 0,0308 рад.). Магнит M_2 , поворачивая пучок в вертикальной плоскости на угол $\phi = a$, выводит частицы на новое направление.

В горизонтальной плоскости несимметричный триплет Q_1 , Q_2 , Q_3 (ДФД) формирует изображение на импульсном коллиматоре (ИК), дисперсионное смещение на котором определяется расстоянием от мишени до центра магнита M_1 (L_1), углом поворота в магните ($\phi_1 = 40^\circ$) и коэффициентом увеличения триплета, т.е.

 $D_{\rm ur} = \phi_1 \quad \Delta P / P_0 \quad L_1 \quad V_1 \quad .$

Конечный дублет формирует изображение в обеих плоскостях в районе экспериментальной установки, а магнит Мз компенсирует линейную дисперсию и очищает пучок от рассеянных на коллиматорах частиц. Расчетные параметры пучка представлены в таблице II.

Для частиц с импульсом 0,5 Гэв/с отношение на мишени $\frac{N_{\pi^-}}{N_k}$ ~ 200. После сепарации на первой массовой щели канала примесь π^- , μ^- - мезонов снижается до 20 ($N_{\pi^-\mu^-}/N_k$ ~ 20), с учетом распада по длине 9 м.

На расстоянии 12 метров (расстояние от мишени до конечного изображения) отношение N_π-_µ-/ N_k- возрастает до 40 (из-за распада).

Если для эксперимента с K^- -мезонами необходима лучшая очистка пучка от фоновых π^- , μ^- - мезонов, можно использовать дополнительный метод сепарации по импульсу с использованием поглотителя (при этом требуется небольшое изменение оптической схемы – изображения в горизонтальной и вертикальной плоскости совмещаются в районе массовой шели).

Канал № 23.

Канал предназначается для формирования пучков положительных и отрицательных частиц в диапазоне импульсов от 1 до 4 Гэв/с.

При транспортировке отрицательных частиц с импульсом ~ 2 Гэв/с возможна одновременная (в одном цикле) работа трех каналов (№№ 22, 23,24) от одной мишени. Изменение импульса или знака частиц требует отключения магнита **М**₁, при этом одновременно могут работать только два канала (№ 23 и № 24).

Таблица II

№№ Параметры п/п Параметры	
1. Длина канала	10,5 м
2. Угол рождения частиц в мишени	0,090 рад.
3. Максимальный импульс	0,5 Гэв/с
4. Импульсный интервал, %	<u>+</u> 1-2
5. Телесный угол (стерад)	610 ⁻⁹
6. Дисперсионное смещение на ИК (на 1% д Р / Р ₀)	6 мм
7. Угловая сепарация	1.10 ⁻³ рад.
8. Линейное разделение на массовой щели	20 мм
9. Коэффициент сепарации	2,5
 Коэффициент увеличения в первом изображении: 	
а) вертикальная плоскость	3,0
б) горизонтальная плоскость	1,43
 Коэффициент увеличения в конечном изображении: 	
а) вертикальная плоскость	15,0
б) горизонтальная плоскость	3,0
12. Размер конечного изображения (мм ²)	30 x 20
13. Поток К ⁻ -мезонов в конечном изображении на 10 ¹² сброшенных на мищень потонов	7 8 109
	7,3 • 10 ⁻ 8 10 ⁷
15. Примесь т -мезонов в конечном изображении	40 на 1 К⁻

Оптическая схема канала (рис. 5) с полевой линзой в промежуточном изображении допускает получение полностью ахроматизированного пучка частиц в конечном изображении. Первый объектив формирует изображение в обеих плоскостях внутри линзы Q₃. Сила полевой линзы Q₃ выбирается из расчета перевода центра (выходной главной плоскости) магнита M₂ на центр магнита M₃ (с учетом действия линз первого объектива).

Рис. 5. Оптическая схема канала No 23. — · — · — осевая траектория частиц для $P_1 = P_0 - 0.01 P_0$.

Последний объектив (**Q**₄, **Q**₅ - типа МЛ-16) переводит изображение на экспериментальную установку. Пучок транспортируется в вакуумпроводе.

Расчетные параметры канала № 23 представлены в таблице III .

№№ Название параметров п/п	Величина
1. Длина канала	21 м
2. Угол рождения частиц в мишени (рад.)	0
3. Максимальный импульс	~5 Гэв/с
4. Импульсный интервал (в %)	<u>+</u> 1
5. Телесный угол (стерад.)	~1.10 ⁻³
6. Дисперсионное смещение на ИК (на 1% ΔР/Ро)	~10 мм
7. Размер изображения на ИК:	

Таблица III

	а) вертикальная плоскость	~ 30 мм
	б) горизонтальная плоскость	~20 мм
8.	Размер конечного изображения (мм ²)	20 x 20
9.	Поток <i>т</i> -мезонов с импульсом 2 Гэв/с на 10 ¹² протонов, сброшенных на мишень	-5.10 ⁶

Канал № 24.

При наведении протонного пучка на мишень, установленную в F_2 , предусматривается возможность проведения экспериментов с нейтральными частицами. Через отверстие в ярме магнита СП-57, которое будет определять апертуру пучка, пропускаются нейтральные частицы, рождающиеся в мишени под углом ~ 61°. Канал состоит из системы коллиматоров, магнита M_1 (типа СП-57), очищающего пучок от заряженных частиц, и магнита СП-41-А, установленного на расстоянии 9 м от мишени (F_2).

Таким образом, при наведении протонного пучка на мишень, расположенную в F₂, могут одновременно работать каналы № 22, № 23 и № 24.

Совместно с этими каналами, в принципе, может работать один из каналов от внутренней мишени, и канал, формирующий пучок на пузырьковую камеру.

При "сбросе" первичного пучка на мишень **F**₃ предусматривается работа канала №26, который предназначается для исследования быстрых *п*-мезонов, образующихся при взаимодействии релятивистских ядер с ядрами мишени. Выделение необходимого импульса будет производиться экспериментальной аппаратурой.

Канал состоит из дублета линз типа 20к100, который формирует параллельный пучок, и двух магнитов, отделяющих *п* -мезоны от первичного пучка.

Если ускоренный пучок выводится по направлению - 1 (магнит М₁ выключен), мишень может быть установлена в **F**₁ (на расстоянии 150 см внутри амбразуры со стороны корпуса № 1 рис. 1).

В этом случае возможно проведение экспериментов по коммулятивному взаимодействию ускоренных ядер (направление 1) и рассеянию протонов на протонах на малые углы (канал № 25).

Мишени размещаются внутри вакуумпровода и меняются дистанционно, без нарушения вакуума. По направлению канала № 25 в вакуумпроводе предусматривается окно, закрытое майларовой диафрагмой, позволяющее пропускать частицы, выходящие из мишени под углом 4° - 8°.

Магнит M; (типа СП-94) должен быть установлен на подставке, допускающей его перемещение поперек пучка на расстояние около 2 м (общее перемещение).

Прошедший мишень (**F**₁) первичный пучок собирается дублетом линз 20к200 и отклоняется магнитом M₂ (типа СП-12) в ловушку. Пучок ведется в вакууме. При проведении экспериментов на данном направлении возможна работа каналов №20 или №21 в измерительном павильоне, или одного из каналов.

> Рукопись поступила в издательский отдел 11 апреля 1972 года.