

13-5157

Экз. чит. ЗАЛА

А.И. Владимиров, Е.Д. Воробьев, И Ю.П. Третьяков

В.А. Саенко,

ИССЛЕДОВАНИЕ ЗАРЯДОВОГО СОСТАВА ИОНОВ В СИСТЕМЕ "ПЛАЗМА-ПУЧОК"

13-5157

А.И. Владимиров, Е.Д.Воробьев, В.А. Саенко, Ю.П. Третьяков

ИССЛЕДОВАНИЕ ЗАРЯДОВОГО СОСТАВА ИОНОВ В СИСТЕМЕ "ПЛАЗМА-ПУЧОК"

Направлено в "Журнал технической физики"

Научно-техническая библиотека ОИЯИ

Введение

Постановка работ по исследованию зарядового состава ионов плазмы, созданной ионизацией газа электронным пучком в магнитном поле, представляет значительный интерес как с точки зрения моделирования физических процессов, происходящих в положительном столбе дугового, отражательного и плазменно-пучкового разрядов, так и для ряда технических приложений (ионные и плазменные источники, ионные лазеры и современная ионно-электронная технология).

Распределение ионов по зарядностям в настоящее время исследовано только в дуговом и отражательном разрядах^{1-5/}. Известно, что при заданных давлении, магнитной индукции и геометрии разрядного промежутка зарядовый состав ионов в положительном столбе этих разрядов зависит от подводимой мощности, которая определяет температуру плазменных электронов^{1/}. Установлено экспериментально, что ионы высоких зарядностей появляются в спектре при увеличении разрядного напряжения^{2/}. Оценки показывают, что основным механизмом образования многозарядных ионов (м.з.и.) в перечисленных разрядах низкого давления является ступенчатая ионизация атомов электронным ударом. Вероятности ионизации образования ионов высоких зарядностей до-

стигают максимума при энергии электронов в 3-5 раз выше ионизационного потенциала соответствующего зарядового состояния /3-4/, что составляет несколько килоэлектронвольт.

При обычной для таких разрядов температуре электронов в 10⁵⁰К число электронов в области 100 в составляет 10⁻⁵ от общего числа, а тепловые электроны с энергией больше нескольких сот вольт практически не существуют. Между тем в ряде работ показано, что в разрядах низкого давления присутствуют "аномально ускоренные, немаксвелловские" электроны в количестве 10⁻² от общего числа электронов^{/6-8/}. Можно предполагать, что они могут существенно влиять на зарядовый состав ионов в разряде. Наиболее удобной моделью для изучения влияния "немаксвелловских" электронов на процесс образования м.з.и. является система "плазма-пучок" в продольном магнитном поле. Проведение таких исследований составляло цель настоящей работы.

Методика эксперимента

Схема экспериментального устройства показана на рис. 1. Стационарный электронный пучок диаметром $d_k = 5-7$ мм формировался электронной пушкой (1-3) в продольном магнитном поле Н. Ток пучка $I_k = 0,1 + 3a$, энергия электронов – $V_k = 1 + 4$ кв. Пучок электронов инжектировался в разрядную камеру (4) с каналом квадратного сечения (5) размером 8 x 8 мм² и высотой 250 мм, в средней части канал имел уширение сечением 12 x 14 мм² и высотой 35 мм. В центре камеры были расположены отверстие для напуска газа (6) и эмиссионная шель (7) размером 1 x 15 мм² для извлечения и анализа ионов. Расстояние между пушкой и камерой было равно 30 мм. На противоположном торце камеры находился коллектор электронов (8). Устройство помещалось в вакуумную камеру, находящуюся между полюсами элект-

Η

Рис. 1. Экспериментальное устройство. 1 — вспомогательный катод, 2 — катод электронной пушки(LaB₆), 3 — анодная диафрагма, 4 — разрядная камера, 5 — канал, 6 — отверстие для напуска газа, 7 — эмиссионная щель, 8 — коллектор электронов.

ромагнита диаметром 1 м. Предельный вакуум установки при включенной фреоновой ловушке составлял $P_0 = 3.10^{-6}$ торр. Индукция магнитного поля изменялась в пределах 3 + 6,5 кгс. В качестве рабочего вещества в разрядную камеру подавались аргон, криптон, ксенон, пары молибдена. Извлеченные из разряда ионы разделялись по отношению массы к заряду A/Z_i после поврота в магнитном поле на 180° и попадали на коллектор ионов, перемещающийся в фокальной плоскости. Сигнал с коллектора ионов регистрировался самописцем ЭПП-09.

Результаты эксперимента

В зависимости от величины расхода газа (рис. 2) наблюдались три режима взаимодействия электронного пучка с плазмой, им образованной. При небольших расходах газа (q < 0.5 см³/мин) имел место квазивакуумный режим I (в соответствии с принятой ранее терминологией^{/8/}). Ток I , к на коллектор электронов (кривая 1) при этом близок к величине инжектируемого тока пучка. Дальнейшее увеличение расхода газа при постоянстве остальных параметров пучка приводило к резкому возрастанию тока коллектора и извлекаемого из разряда ионного тока I₁5 (кривая 2). Свечение плазменного столба увеличивалось до размеров разрядного канала. В разрядной камере развивался высокотемпературный режим плазменно-пучкового разряда (режим II), в котором токи І , к и І , монотонно возрастали с увеличением расхода газа. При q 😒 1,4 см /мин ток коллектора менял направление, преобладающим становился ионный компонент тока. Плазменно - пучковый разряд переходил в низкотемпературный режим III, который предшествовал развитию дугового разряда, когда независимое регулирование энергии и тока электронного пучка становилось невозможным. Указанные режимы взаимодействия электронного пучка с плазмой имели место независимо

от потенциала коллектора электронов V_{AK}. Подача на коллектор отрицательного потенциала, равного потенциалу катода пушки, облегчала зажигание разряда и увеличивала извлекаемый ионный ток (кривая 3).

Типичный спектр распределения ионов по зарядностям в режиме I показан на рис. 3. На основе таких спектров ток ионов каждой зарядности I_z+нормировался к току однозарядных ионов I₊ и строились кривые распределения ионов по зарядностям Z_i для различных режимов взаимодействия электронного пучка с плазмой. В режимах I , II увеличение расхода газа повышает количество многозарядных ионов в плазменном столбе (рис. 4). При переходе к режиму III , если ток и энергия электронов поддерживаются постоянными, количество м.з.и. в разряде уменьшается.

Зависимости извлекаемого тока ионов каждой зарядности от магнитной индукции, тока и энергии электронов пучка являются немонотонными. На рис. 5 показана в относительных единицах зависимость зарядового состава ионов от энергий электронов пучка V_K (ток ионов каждой зарядности нормирован к его максимальному значению). Увеличение V_K вызывает почти линейный рост суммарного вытянутого из разряда тока I ₁ (пунктирная кривая), однако, токи ионов высоких зарядностей проходят через максимум, который сдвигается в сторону высоких энергий при переходе к большим зарядностям.

Зарядовый состав ионов существенно зависит от распределения потенциалов на электродах в разрядном устройстве (рис. 6). В эксперименте стенки разрядной камеры были заземлены, а потенциалы анода пушки V_A и коллектора электронов V_{AK} могли изменяться. Эпюры напряжений в устройстве показаны в правом верхнем углу рис. 6. В случаях "а" и "б" создаются условия для отражения от коллектора и осцилляции в разряде плазменных электронов и первичных электронов пучка (в случае "б" с энергией < 440 в). В положительном столбе образуется боль-

Рис. 4. Влияние расхода газа на зарядовой состав ионов. Криптон, 1 - q = 0,25, 2 - q = 0,45, 3 - q = 0,62, 4 - q = 0,77, 5 - q = = 0,88 см³/мин. ше многозарядных ионов, чем в случаях "в" и "г", когда облегчен уход электронов на торцы разрядной камеры.

Процентное содержание многозарядных ионов в плазменном столбе разряда значительно увеличивается при переходе к импульсному режиму работы электронной пушки (длительность импульса $r_u = 1$ мсек, частота посылок f = 100 гц). В таблице приведен зарядовый состав ионов для аргона, криптона и ксенона. Вытягивающее напряжение равно 15 кв (при этом ионы Kr^+ , Xe^+ и Xe^{2+} не регистрируются анализатором).

Таблица

Распределение ионов по зарядностям в импульсном

режиме ($d_{K} = 5$ мм, $V_{AK} = V$)

Эле- мент	Н,кэ	Ток ионов, отн. ед.									
		+1	+2	+3	+4	+5	+6	+7	+8	+9	+10
Ar	4	1	1,46	0,75	0,16	0,065	^x 0,004	1	•	.,	
Kr	4		1	0,66	0,22	0,12	0,032	^x 0,008	°0,002	•	
Kr	6,5		1	0,76	0,45	0,38	0,15 ^x	0,06 ^x	0,018	0,008	
Xe	4		-	1	0,77	0,62	0,39	0,23	0,088 ^x	0,018 ^x	0,002
Xe	6,5			1	1,3	0,96	0,71	0,35	0,13 ^x	0,04 ^x	0,005

^хДанные приблизительные, точным оценкам мешают ионы примесей углерода, азота, кислорода.

Обсуждение результатов

Зарядовый состав ионов в системе "плазма-пучок" существенно зависит от режимов взаимодействия электронного пучка с плазмой. В квазивакуумном режиме I электронным пучком образуется слабоионизи-

10

рованная "холодная" плаэма, состоящая в основном из однозарядных ионов, концентрация которых близка к концентрации электронов в пучке. Наиболее широкий спектр зарядностей ионов наблюдается в высокотемпературном режиме плазменно-пучкового разряда, когда происходит эффективный нагрев плазменных электронов электронами пучка. Немонотонность зависимостей зарядового состава ионов в системе "плазмапучок" от энергии электронов пучка (рис. 5), а также влияние потенциала торцевых электродов разрядной камеры (рис. 6) свидетельствуют о том, что в образовании ионов высоких зарядностей существенную роль играют электроны пучка. Этим, в частности, объясняется более плавный спад кривой "а" на рис. 5 по сравнению с кривой "б" в области Z _>4 .

Для увеличения спектра зарядностей ионов (что является важным, например, в источниках м.з.и. и ионных лазерах) необходимо увеличивать не только общую мощность, подводимую к разряду, но и повышать анодные напряжения. В плазменно-пучковом разряде возможно получение регулируемых высоких энергий первичных электронов и высоких температур плазменных электронов, поэтому разработка источника м.з.и. на основе разряда такого типа, по-видимому, будет перспективной. Электронная пушка ионного источника должна формировать пучок электронов максимальной плотности с энергией, при которой образование ионов необходимой зарядности имеет максимум вероятности. Для обеспечения эффективной передачи энергии от электронов пучка к плазменным электронам, ответственным за генерацию ионов низких зарядностей, в разрядной камере необходимо реализовать турбулентный режим взаимодействия электронного пучка с плазмой при минимальной низкочастотной неустойчивости плазменного столба.

12

Рис. 6. Влияние потенциала торцевых электродов на зарядовый состав ионов. Криптон, $q = 0.4 \text{ см}^3/\text{мин}$, $d_k = 5 \text{ мм}$, $I_K = 0.62 \text{ a}$, H = 4 кэ, $V_{AK} = V_K$.

14

Литература

- А.С. Пасюк, Ю.П. Третьяков, С.К. Горбачев. Атомная энергия, <u>24</u>,
 1, 21 (1968).
- 3. R. Basile, J.M. Lagrange. Nucl.Inst.Meth., <u>31</u>, 195 (1964).
- 4. C.E. Anderson, K.W. Ehlers. Rev. Sci.Inst., 27, 10, 809 (1956).
- 5. R.J. Jones, A. Zucker. Rev.Sci.Inst., <u>85</u>, 6,562 (1954).

6. И.М. Поляк. Радиотехника и электроника, 6, 3, 395 (1961).

7. А.К. Березин, Г.П. Березина, Л.И. Болотин, Я.Б. Файнберг. Атомная энергия, <u>14</u>, 3, 249 (1963).

 В.А. Саенко, И.А. Дерюгин, Е.Т. Кучеренко. ТрудыIX международной конференции по явлениям в ионизированных газах, Бухарест, 1969.
 W.A. Sayenko, I.A. Deryugin, E.T. Kucherenko. IX International Conference on Phenomena in Ionized Gases, Contributed papers, 579, Bucharest, 1969.

15

Рукопись поступила в издательский отдел 5 июня 1970 года.