СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна

And the second

5-191

13 - 4430

Э.В.Васильева, Э.З.Рындина

О НЕКОТОРЫХ СВОЙСТВАХ ГЕРМАНИЯ, ИСПОЛЬЗУЕМОГО ДЛЯ ИЗГОТОВЛЕНИЯ Ge (Li) -ДЕТЕКТОРОВ

13 - 4430

Э.В.Васильева, Э.З.Рындина

•

• .

О НЕКОТОРЫХ СВОЙСТВАХ ГЕРМАНИЯ, ИСПОЛЬЗУЕМОГО ДЛЯ ИЗГОТОВЛЕНИЯ Ge (Li) -ДЕТЕКТОРОВ

В настоящее время Ge(Li) - детекторы находят все более широкое применение в экспериментальной ядерной физике. Однако их изготовление представляет ряд трудностей, связанных в основном с качеством исходного материала. Параметры исходного материала, измеряемые заводом или фирмой-изготовителем, хотя и характеризуют в какой-то степени качество германия, но не определяют его пригодности для изготовления γ - детекторов с высоким энергетическим разрешением. Поэтому изучение свойств материала и выяснение корреляции этих свойств с качеством детекторов остается одной из наиболее важных проблем.

Общие требования к материалу могут быть сформулированы следующим образом:

1. Высокая скорость дрейфа лития.

2. Малые токи утечки во время дрейфа при достаточно больших смещениях и повышенной температуре.

3. Минимальная преципитация лития во время дрейфа.

4. Возможность изготовления детекторов а) с низкими шумами и малыми токами при больших смещениях, б) минимальными потерями заряда из-за рекомбинации и прилипания неравновесных носителей тока.

Целью настоящей работы было исследование и сравнение свойств исходного р – германия, полученного из различных источников.

Для изготовления детекторов нами использовался материал марки ГДД- 10-40 и бельгийский германий фирмы Хобокен. Использовались образцы со следующими параметрами: плоскость роста (1.1.1), легирующая

добавка Ga или In, удельное сопротивление $\rho = 20 + 30$ ом. См, время жизни неосновных носителей тока $\tau = 350 + 1150$ мксек, плотность дислокаций N_d = 0,6 + 2,5.10³ см⁻². Однако качество и параметры детекторов, изготовляемых из материала с примерно одинаковыми параметрами, могут быть резко различны:

1. Выход детекторов с высоким энергетическим разрешением из материала ГДД существенно ниже, чем из материала Хобокен, что особенно сказывается при изготовлении детекторов с большими чувствительными объемами.

2. Дрейф в образцах происходит с различной скоростью, что зависитот содержания кислорода в материале^{/1/}.

3. Поведение диодов во время дрейфа резко различно. Образцы Хобокен позволяют вести дрейф при больших смещениях и малых токах (рис. 16), а на образцах ГДД в среднем через несколько суток токи возрастают, и дрейф приходится проводить при пониженных смещениях (рис. 1в и г). Исключение составляют "недрейфуемые" образцы, в которых напряжение на дрейфе можно поддерживать достаточно длительное время большим при малых токах (рис. 1а), но глубина полученного

і -слоя не превышает 1-1,5 мм.

Для сравнения свойств исходного материала на шайбах от различных слитков германия был измерен температурный ход электропроводности и холловской подвижности, однако не была обнаружена разница у образцов ГДД и Хобокен в интервале температур от 77°K до 300°K.

Исследование поведения лития в германии было проведено на трех шайбах от имевшихся в нашем распоряжении слитков Хобокен, и на четырех шайбах от слитков ГДД 10-40. Наиболее характерные для этих материалов результаты приведены на рисунках и в таблице 1. Все эти слитки были использованы для изготовления детекторов, параметры которых приведены в таблице II.

	-
	1
TOATUNO	
T d u d d d d	•
	-

	Написнование образцов ^{X/}	Удельное сопротивление	Время жизни иксек	Плотность дислокации N ₄ см ⁻²	Концентрация центров пре- ципитации	Концентрация инсло- рода N. см ⁻³	
		p			N, CM	по преци- питации	по скоро- сти дрейфа
01	F-I-2	I6,8-II,3	-	2100-670	I,3.10 ^{II}	4,8.I0 ^{I3}	I,4.I0 ^{I4}
	ГЛД-27	25,4-29,8	I400	2000-1500	5,2.10 ¹¹	8.10 ¹⁵	I,2.I0 ^{I6}
	HB6I	19,5-26	580-550	II00-I400	-	-	I,8.10 ¹⁴
	ЦД—4 2	18-26,5	370-360	2700-I 50	2,3.10 ¹⁰	2,4.IO ^{I3}	4,4.IO ^{I3}

х/обезначения присвоени в ЛНФ ОНЯН.

9 - 1

Г - натерная ГДД-10-40, Н - Хобокен

Рис. 1. Изменение тока и напряжения во время высокотемпературного прейфа.

Наименов. образцов	Тип	Чувствит. объем в см ³	Емкость в пф	і́—_СДОЙ В ММ	Время дрейфа в час.	Число диффу- зий	Рабочее смещеене в	Обратные токи А	Разремение на Со ⁶⁰ в кэв без вичета мумов аппаратуры
НД-42	ĸ	30	44,I	8-9	520	I	II50	2.10 ⁻⁹	3,2
HB-6IA	ĸ	33	46,0	9 - 10	1510	4	960	2.10 ⁻⁹	3,8
Γ-I-2	п	I,I	9,2	4	150	3	600	2.10 ⁻⁹	4 , I
ГДД-27	п	0,4		I,5	150	I	-		
KT-239	ĸ	17	60,4	6	290	2	750	6.10 ⁻⁹	18

Таблица	Π
---------	---

.

.

.

Растворимость лития в чистом германии составляет 6.10¹³ атомов в см³ при комнатной температуре^{/2/}. Германий, насыщенный литием при температуре 400°С до концентраций 4.10¹⁷ см⁻³, представляет собой при комнатной температуре пересыщенный твердый раствор, непрерывно распадающийся до равновесного значения. Этот распад выражается в выпадении ионизованного лития в электрически нейтральное состояние ("преципитация лития"). Скорость преципитации зависит от ряда параметров (температура преципитации, степень пересыщения и т.д.) и, в частности, от концентрации центров и катализаторов преципитации, каковыми являются вакансии, кислород и другие дефекты структуры/3.4/.

Преципитация лития в n -слое p - i - n детектора приводит к тому, что во время дрейфа иссякает запас ионизованного лития, и дрейф останавливается. Преципитация в i -слое, оставленном без смещения при комнатной температуре, выражается в раскомпенсации i -слоя и образовании в нем центров захвата носителей тока.

Исследование процесса преципитации велось по изменению во времени удельного сопротивления насыщенного литием образца

 $\rho = 1 / n e \mu$.

Так как донорные уровни лития при комнатной температуре полностью ионизованы, то п эквивалентна разности концентраций доноров и акцепторов N_D - N_A, т.е. в начале процесса, когда $N_D \gg N_A$, п эквивалентна концентрации ионизованного лития в германии. Подвижность μ зависит от концентрации ионизованной примеси по закону Дебая-Конуэлла^{/5/} и может быть найдена по данным^{/8/}.

Для исследования кинетики процесса шайба от исследуемого слитка толщиной 3 мм насыщалась литием в течение 20 часов при температуре 400°С в токе азота. Для этого протравленная шайба покрывалась литиевой пастой (суспензия лития в минеральном масле) с обеих сторон и помещалась в печь для диффузии.

По окончании диффузии шайба вынималась из печи и быстро охлаждалась струей азота. Верхние слои, покрытые пастой, сошлифовывались. Измерение сопротивления шайбы проводилось четырехзондовым методом по компенсационной схеме. Измерения велись при комнатной температуре в темноте. Зависимость процесса преципитации лития от времени представлена на рис. 2 для образцов НД-42 (Хобокен), Г-1-2 и ГДД-27 (германий ГДД 10-40).

Кинетика процесса описывается уравнением /7/

$$\frac{N_{D}-N_{f}}{N_{D_{0}}-N_{f}} = \exp(-a t^{m}),$$

где N_D - концентрация ионизованного лития в момент времени t. N_{D0} - концентрация лития в момент времени t = 0 (равновесная растворимость при температуре насыщения 400°C), N₁ - равновесная растворимость лития при температуре преципитации 21°C, m = 3/2, что вытекает из предположения о сферической форме центров преципитации/7,8/ и справедливо для начала процесса

$$a = \frac{4}{3} \pi N_{\rm p} \left[\left(N_{\rm D_0} - N_{\rm f} \right) v \right]^{1/2} \left(2D_{\rm Li} \right)^{3/2}.$$

N_p - концентрация центров преципитации, D_{L1} - коэффициент диффузии лития при температуре осаждения, v - приращение объема зародыша, приходящееся на один атом преципитированного лития, равное 2,2.10-23 см³ /3/.

Отсюда легко может быть подсчитана концентрация центров преципитации N_p для различных образцов, если использовать полученные данные (рис. 2) и воспользоваться значениями $D_{L1} = 4.10^{-12}$ см² /сек, $N_r = 6.10^{13}$ см⁻³, $N_{D_0} = 4.10^{17}$ см⁻³. Тогда $N_p = 3.5.10^{18}$ a см⁻³.

Аналогично процессам, происходящим в кремнии^{/9,10/}, по точкам излома на кривых преципитации (рис. 2) может быть определена концентрация кислорода N₀ в образцах германия^{/12/}.

9

\$

Обсуждая полученные данные (см. таблицу 1), отмечаем следующее:

1. Концентрация центров преципитации в слитках, из которых получаются высококачественные детекторы, на порядок меньше, чем в остальных образцах.

2. Концентрация кислорода N₀, полученная по точкам излома кривых преципитации, в "недрейфуемом" образце – 8.10¹⁵ см⁻³, у нормально дрейфуемых образцов – 2 + 5.10¹³ см⁻³.

3. Процесс выпадения лития происходит до значения 2-5.10¹³ _{см}-3_. Это значение меньше равновесного при данной температуре, т.к. оно представляет собой превышение концентрации лития над уровнем легирования данного слитка (N_D - N_A).

Измерение преципитации в n - слое

Так как при температуре насыщения 400°С может происходить одновременно с диффузией лития миграция вакансий внутрь образца и тем самым увеличение центров преципитации, мы считали целесообразным провести измерение преципитации в n - слое, полученном в обычных технологических условиях (диффузия в вакууме при 400°С в течение 10 минут). Результаты измерений представлены на рис. 3 в виде зависимости ND от времени (где N_D - средняя концентрация лития в n -слое \overline{N}_{D_0} в момент времени t, а \overline{N}_{D_0} - средняя концентрация в момент времеt = 0). Как следует из сравнения кривых, полученных для образни цов от различных слитков, характер выпадения лития сохраняется, т.е. у образцов ГДД 10-40 концентрация падает более резко, чем у образцов Хобокен. Это еще раз свидетельствует о том, что концентрация центров преципитации в первых больше, чем во вторых.

Кроме того, следует отметить тот факт, что образцы, на которых была измерена преципитация в п – слое (т.е. после того как они находились ≈ 160 часов в комнатных условиях), были поставлены на дрейф во фреон-113 без дополнительного напыления лития или прогрева. На образцах Хобокен дрейф после этого происходил с нормальной скоростью,

Рис. 3. Преципитация лития в п -слое (1 - НД-42 Хобокен, 2-Г-1-2 и 3-КГ-239 (ГДД-10-40)).

на образцах ГДД - с незначительным замедлением, а в образце ГДД-27 литий продвинулся всего на глубину 1,5 мм.

Концентрация кислорода в германии определялась нами также и по скорости дрейфа, аналогично тому как это делалось на кремнии/1/, однако эти данные менее достоверны, так как заключают в себе погрешность определения константы диссоциации образующихся комплексов [Li 0⁺].

Исследование процессов релаксации

Термин " релаксация" по отношению к Ge(Li) - детекторам/11/ был применен для того, чтобы охарактеризовать процессы, происходящие в i - слое детектора, оставленного без смещения при комнатной температуре.

Для сравнения этих процессов, происходящих в различном материале, из исследуемых образцов изготовлялся **p**-**i**-**n** переход обычным методом диффузии, дрейфа и выравнивания. Проводились наблюдения за изменениями в **i** -слое по вольт-емкостным характеристикам, распределению фотоэдс и термоэдс в зависимости от времени релаксации. На рис. 4 и 5 представлены результаты этих измерений для образца ГДД 10-40 (Г-1-2) (рис. 4 а,б,в) и образца Хобокен (НВ-61) (рис. 5 а,б,в). Как следует из увеличения пиков фотоэдс (рис. 4), увеличения **p** - проводимости **i** -слоя (термоэдс) и из увеличения емкости, в образце Г-1-2 проис-

т делоя (термозде) и но узели юпии симости, в странат т ходит непрерывное увеличение концентрации носителей. Это можно объяснить диссоциацией при комнатной температуре комплексов [Li⁺Ga⁻] и диффузией лития к центрам преципитации и поверхности, где он выпадает в электрически нейтральное состояние, оставляя часть акцепторных уровней нескомпенсированными.

Изготовленный на материале Хобокен і – слой имеет проводимость п – типа. Поэтому в начале релаксации выпадение лития в электрически нейтральное состояние приводит к уменьшению п – проводимости і –слоя (т.е. уменьшению концентрации носителей), а затем – к переходу его в

р -тип и увеличению р - проводимости. Если принять, что выпадение лития происходит равномерно по всему объему і - слоя, то можно оценить уровень компенсации по величине емкости.

Рис. 4. Изменение вольт-емкостных характеристик, распределение фотои термоэдс в зависимости от времени релаксации.

Рис. 5Изменение вольт-емкостных характеристик, распределение фотои термоэдс в зависимости от времени релаксации.

На рис. 6 представлена зависимость N_A - N_D от времени релаксации для образцов Г-1-2, НВ-61 и образца КГ-279.

Обсуждение результатов

Определение пригодности материала для Ge(Li) - детекторов остается одной из важных проблем. Хотя к настоящему моменту невозможно указать параметр, по которому следует отбирать материал, но в результате проделанной работы можно дать следующие рекомендации.

1. Если провести измерения распада пересыщенного раствора Ge-Li во времени, то у хорошего материала распад идет существенно более медленно и продолжается около 10 дней, пока не будет достигнуто равновесное значение растворимости лития ($N_D^- N_A = 2,4.10^{13} \text{ см}^3$), в то время как у материала, который менее стабильно ведет себя на дрейфе и дает существенно меньший выход детекторов с высоким разрешением, распад заканчивается на 3 и 4 день, хотя и идет до этого же уровня. У "недрейфуемого" материала существенная часть лития выпадает в течение одного дня. Рассчитанная по этим кривым концентрация центров преципитации оказывается на порядок ниже у материала Хобокен, чем у материала ГДД-10-40, хотя дрейф в последнем идет без существенного замедления.

2. Концентрация кислорода у нормально дрейфуемого материала – 2-5.10¹³ ат/см³, у материала с пониженной скоростью дрейфа – 5.10¹⁴ ат/см³, в материале с $N_0 = 8.10^{15}$ ат/см³ дрейф не идет больше, чем на глубину 1 мм. Эти данные находятся в хорошем согласии с данными Фокса/12/.

3. Установлено, что материал, пригодный для изготовления детекторов, может после проведения диффузии в течение 6-7 суток выдерживаться при комнатной температуре без смещения, а затем дрейф в нем происходит с нормальной скоростью, поэтому испытание шайб от слитков для выяснекия их пригодности следует производить именно вышеуказанным способом, т.е. в наименее благоприятных условиях.

4. У детекторов с хорошими характеристиками і – слой обладает проводимостью п – типа, и выдержка его при комнатной температуре приводит к тому, что остаточная концентрация носителей вначале уменьшается, а затем увеличивается после перехода і –слоя в р-тип проводимости.

Рис. 6. Зависимость уровня компенсации от времени релаксации.

Литература

- 1.E. M.Pell, J.Appl. Phys., <u>32</u>, No.6, 1048 (1961).
- 2. F.A. Trumbore. Bell Syst. Techn. J. 39, No. 1 (1960).
- 3. F.G.Morin, H.Reiss, J. Phys., Chem. Solids 3, 196 (1957).
- 4. R.Weltzin, R.A.Swalin, Journ . Phys. Soc. Japan <u>18</u>, Suppl. III, 136 (1963).
- 5. P.Debye, E.M.Conwell, Phys. Rev., 93, 693 (1954).
- 6. D.B. Cuttriss. Bell. Syst. Techn. J. 40, 509 (1961).
- 7. F.S.Ham, J. Phys. Chem. Solids 6, 335 (1958).
- 8. Г.Харди, Т.Хилл. Успехи физики металлов П. Металлургиздат, 1958.
- 9. H.Reiss, W.Keiser. "Properties of Elemental and Compound Semiconductors", New York - London (1960).
- 10. E.H.Pell. Solid State Physics in Electronics and Telecommunications, Academic Press (1960), London (1958).
- 11. P.P.Webb, IEEE Trans. NS 15, No. 3, 321 (1968).
- 12. R.J.Fox, IEEE Trans. NS-13, N3 , 367 (1966).

Рукопись поступила в издательский отдел 17 апреля 1969 года.