3724

Дубна

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

13 - 3724

3K3. 4NT. 3

С.А.Аверичев, Л.Н.Беляев, А.Г.Балашов, Н.М.Вирясов, В.Г.Глущенко, В.С.Григорашенко, К.Гроте, А.Н.Зубарев, Н.И.Малашкевич, Н.И.Павлов, М.И.Соловьев, Н.А.Смирнов

МАГНИТНОЕ ПОЛЕ 2-х МЕТРОВОЙ ПРОПАНОВОЙ ПУЗЫРЬКОВОЙ КАМЕРЫ ОИЯИ

13 - 3724

С.А.Аверичев, Л.Н.Беляев, А.Г.Балашов, Н.М.Вирясов, В.Г.Глущенко, В.С.Григорашенко, К.Гроте, А.Н.Зубарев, Н.И.Малашкевич, Н.И.Павлов, М.И.Соловьев, Н.А.Смирнов

МАГНИТНОЕ ПОЛЕ 2-х МЕТРОВОЙ ПРОПАНОВОЙ ПУЗЫРЬКОВОЙ КАМЕРЫ ОИЯИ

Введение

Лаборатории большинства стран-участниц ОИЯИ планируют проведение исследований на ускорителе 70 Гэв ИФВЭ в г.Серпухове с помощью двухметровой пропановой пузырьковой камеры/1/. В процессе создания этой камеры, с целью уменьшения затрат для нее был использован один из трех имеющихся в ЛВЭ ОИЯИ магнитов СП-41.

Использование готового магнита уменьшило стоимость всего проекта, но при этом создало ряд неудобств при разработке конструкции.

Большой межполюсной зазор для размещения камеры и два отверстия в верхнем полюсном блоке для фотографирования существенно изменили как величину напряженности магнитного поля, так и ее однородность.

Для того, чтобы получить максимально возможное магнитное поле, были выполнены работы по подбору источника питания, изменена система охлаждения и укреплены обмотки, с целью увеличения тока питания магнита с 1900 до 3600 ампер.

Выбор генератора и тока питания магнита

Предусмотренный проектом для СП-41 генератор не позволил существенно увеличить ток питания магнита. Было решено осуществить питание магнита СП-41Г от генератора ГП-5000, питающего магнит ИК-3-4. При этом руководствовались следующими условиями:

1. Поскольку охлаждение обмотки магнита осуществляется фильтрованной водой, то ее температура на выходе не должна превышать +60°С, иначе начнется отложение солей на стенках каналов обмотки.

2. Давление охлаждающей воды на входе не должно превышать 5,5 атм, т.к. проектная величина давления 2,5 атм., и обмотка испытана давлением 8 атм.

3. Динамические нагрузки на обмотку при включении и аварийном отключении не должны приводить к разрушению изоляции и повреждению обмотки.

4. Магнит СП-41Г в форсированном режиме питания должен работать длительное время – порядка сотен часов без перегрева.

5. Стабилизация тока питания должна быть высокой. Отклонения от среднего тока не должны превышать <u>+</u> 0,1% за все время работы магнита.

При переходе на форсированный режим питания магнита были сделаны замеры температуры воды на входе и выходе на каждой параллельной ветви (галете) обмотки, температуры шин, нагрев кабеля, прогиб прямолинейных участков обмотки и т.д. В период испытания были увеличены сечения подводящих ток шин и кабеля.

После проведенных работ при токе питания 3600 ампер температура воды на выходе из обмотки в течение 30 мин. достигала своего максимального значения +48°C и не изменялась в течение трех часов. Перегрев составил +40°C при температуре воды на входе +8°C. Температура ошиновки и подводящих кабелей достигала максимального значения +45°C через 1,5 часа работы магнита при токе 3600 ампер.

В период испытаний ток в магните кратковременно поднимался до 5000 ампер, однако, измерения напряженности поля проводились только при токе 4000 ампер.

По результатам исследований было решено ток в магните не поднимать выше 3600 ампер и не допускать перегрева воды выше 40°С. Поэ-

тому тщательное измерение распределения напряженности магнитного поля было сделано только при рабочем токе.

В таблице I приведены изменения напряженности поля в зависимости от величины тока в обмотке для точек с максимальной и минимальной напряженностью поля. Максимальная индукция в зазоре замерена в геометрическом центре пересечения осей симметрии под верхним полюсом, минимальная – на той же высоте на оси симметрии отверстий для фотографирования.

Измерение магнитного поля.

а). Выбор методики измерений.

Выбор методики измерений зависит от требований к точности определения напряженности поля в каждой точке рабочего объема. Для измерений нами был выбран датчик Холла^{/2-4/}. Один датчик позволяет получать результат с погрешностью не хуже 1%^{/5/}, а с помощью двух датчиков можно уменьшить погрешность до 0,5%. Вторым широко применяемым методом является метод баллистического гальванометра. Этот метод дает погрешность также порядка 1%, но более громоздок по сравнению с методом, использующим датчик Холла. По этим причинам он был отклонен.

Метод ядерного резонанса из-за больших неоднородностей магнитного поля также не имело смысла использовать. Разумность требования на точность магнитных измерений обосновывается сравнением допустимых погрешностей с ошибками, возникающими по другим причинам. Эти ошибки обусловлены следующими причинами:

 Дисторсией оптической системы, с помощью которой регистрируются треки заряженных частиц.

2. Искажениями из-за движения жидкости.

3. Многократным кулоновским рассеянием.

4. Неточностью в восстановлении пространственной картины из-за ошибок в измерении координат на пленке и т.д.

Перечисленные погрешности следует сравнивать с погрешностями, возникающими при магнитных измерениях:

1. Погрешностью из-за изменения температуры датчика в процессе измерений.

2. Погрешностью в величине тока питания датчика при длительных измерениях.

3. Неперпендикулярностью плоскости кристалла датчика Холла к направлению магнитных силовых линий.

4. Погрешностью из-за шумов датчиков.

5. Погрешностью измерительной схемы и т.д.

Измерения поля делались в ноябре 1963 года. В то время мы не располагали фотографиями следов в камере, поэтому не могли определить ошибки из-за дисторсий в оптике и жидкости, а также ошибки при измерениях координат. Мы их брали равными около 1% каждую. Ошибка из-за многократного рассеяния определялась расчётным путем. Для импульсов частиц выше одного ГЭВ'а эта ошибка будет около 3%. Поскольку мы нигде не могли обеспечить знание величин с ошибкой меньше 1%, то и при измерениях магнитного поля допускали погрешность такого же порядка.

б). Градуировка датчика Холла.

В Лаборатории высоких энергий было несколько датчиков Холла, изготовленных в Электротехническом институте Словацкой академии наук ЧССР. Нами использовался датчикs2 -07. Он градуировался дважды. Первый раз в 1963 году по датчику 197. Датчик 197 градуировался в Братиславе с помощью метода ядерного магнитного резонанса.

Вторая градуировка датчика S2 -07 была сделана непосредственно методом ядерно-магнитного резонанса в группе А.Д.Кириллова уже в 1966 году. Для градуировки использовался магнит МС-4. Максимальное расхождение градуировочных значений не превышает 0,4%.

Поскольку первая градуировка была сделана по датчику, градуированному по другому датчику, то вторую градуировку мы считаем более надежной. Так что в конечные результаты внесена соответствующая коррекция.

в). Схема измерений.

Схема измерений такая же, как в работе^{/5/}. Она практически не отличается от схемы, применявшейся при градуировке датчиков, рис. 1.

г). Конструкция измерительного устройства.

Большая неоднородность магнитного поля в верхней части рабочего объема камеры заставила проводить измерения трех составляющих: Н_x, H_y, H_z. Измерения были сделаны одним и тем же датчиком Холла.

Нами был взят куб из немагнитного материала – плексигласа. В центре куба был установлен с хорошей точностью датчик Холла. Для крепления и фиксации датчика в гранях куба с высокой точностью были сделаны отверстия, которые позволяли устанавливать куб с датчиком Холла на латунной площадке держателя.

Для перемещения латунной площадки в продольном, поперечном и вертикальном направлениях было применено специальное устройство из дюралюминиевых направляющих. Вся система из направляющих вставлялась в межполюсной зазор магнита с учётом осей симметрии. Точность установки направляющих по Х и У относительно геометрической оси симметрии была порядка 1 мм. Система направляющих жестко крепилась в зазоре магнита. На продольных направляющих и рельсах с отсчётным приспособлением имелись салазки для перемещения по оси У, на салазках также были направляющие для перемещения по оси Х устройства с держателем датчика. Этот держатель перемещался вертикально по оси вдоль цилиндрического штока. На всех трех направлениях имелись отсчётные устройства, позволяющие определить положение самого датчика.

Точность установки датчика в заданную геометрическую точку с координатами X, Y, Z проверялась методом многократных установок дат-

чика после перемещения его по всем направлениям. Восстанавливаемость положения датчика контролировалась отвесом с острым концом. Отвес был укреплен под площадкой держателя датчика Холла. Острие отвеса при возвращении в первоначальную точку находилось всегда в круге диаметром 5 мм. Отсюда мы делаем вывод, что разброс по X, Y не превышает 3 мм. По оси Z установка была лучше 1 мм, но, делая поправку на возможный прогиб направляющих и перекос в подвижных системах. неточность установки датчика по Z оценивается в 1 мм.

д). Обсуждение погрешностей.

Бетко Ю. и др.^{/Б/} рассмотрели влияние различного рода эффектов на точность измерения магнитной индукции. Из их анализа следует, что если бы при измерениях были соблюдены все условия (температура датчика, постоянство тока его питания, перпендикулярность датчика к направлению силовых линий поля, класс точности измерительных приборов и т.д.), то точность измерений поля была бы такой же, как и точность градуировки. В нашем случае невозможно было установить датчик перпендикулярно к магнитным силовым линиям поля, т.к. магнитные силовые линии имеют искривления из-за отверстий в верхнем полюсном блоке. Отверстия в верхнем полюсном блоке и эффекты на краях при большом зазоре между полюсами делают магнитное поле неоднородным. По этой причине возникает дополнительный источник погрешностей.

Стабилизация тока в магните лучше 0,01%, но установка тока от одного включения к другому также вносит ошибку, обусловленную ошибкой контрольного прибора. Эта ошибка в нашем случае была приблизительно 0,3%.

Погрешность в измерениях каждой из составляющих поля можно считать близкой к градуировочной, т.к. ток питания датчика и класс измерительных приборов были такими же, как и при градуировке. Существенный вклад в погрешность дает погрешность установки датчика (по $X, Y = \pm 3$ мм и по $Z = \pm 1$ мм), т.к. при определении импульсов

заряженных частиц в программу⁶ задаются Н , Н , Н магнитного поля. Определение этих погрешностей можно сделать из повторных измерений и из хода эквипотенциалей. Повторные измерения в некоторых точках, а также распределения эквипотенциалей и учёт разброса в координатах дают ошибку в определении напряженности поля в точке порядка 1%.

Топография магнитного поля в рабочем объеме

камеры

Координатная система – прямоугольная. Центр координатной системы совпадает с центром геометрической плоскости нижней части верхнего полюсного блока. Отсчёт Z – координаты – вниз от плоскости стекол. Расположение координатных осей показано на рис. 2. Из рисунка видно, что X и Y имеют как положительные, так и отрицательные значения, координаты Z – только положительные.

Из первых измерений было установлено, что поле имеет хорошую симметрию. Поэтому тщательные исследования проводились только для одной четверти рабочего объема.

Измеренные значения Н , Н , Н даются в таблице II .

В заключение авторы благодарят И.В. Чувило за интерес к работе, А.Д. Кириллова за помощь при градуировке датчиков, сотрудников Электротехнического отдела и отдела Электрофизической аппаратуры за помощь при исследовании и изменения, внесенные в магнит с целью повышения его мощности; группу техников двухметровой пропановой пузырьковой камеры, принимавшую участие в измерениях, а также сотрудников Электротехнического института Братиславы за предоставление датчиков Холда и консультации.

Литература

1. M.P.Balandin et al. Nuclear Instr. and Methods, 20, 110. (1963).

- 2. А.П.Пинскер. Применение полупроводниковых генераторов Холла в автоматике, ГИТЛ, Киев, 1961.
- 3. В.П.Богомолов. Устройства с датчиками Холла и датчиками магнитосопротивления, ГЭИ, М-Л, 1961.
- 4. C.German. Nucl. Instr. and Methods, 21, 17-16 (1963).
- · 5. Ю.Бетко и др. Препринт · ОИЯИ Р-1689 (1964).
 - 6. В.И.Мороз и др. Препринт ОИЯИ, Р11-351, 2 (1967).

Рукопись поступила в издательский отдел 21 февраля 1968 года.

Таблица 1.

Ток,амперы	HMAX. THC. FAYCC	$\left(\frac{H_{max} - H_{min}}{H_{max}}\right)\%$
2000	13,5	30%
2500	I4 , 6	26,0%
3000	15,7	25,2%
• 3600	17,0	25% ·
4 0 00	17,7	24,8%

		Пл	оскость	Z = I0 см					
	Ү,см	H,kG	H, kG	H _g ,kG		Y, см	H _x ,kG	H _y ,kG	H _z , kG
	=0	0.0000	0.0000	16,996		=0	I.5980	0.0000	16,846
	=I0	0.0357	⊥.3564	15.613		01 =	1.8311	0.9569	15.632
	= 20	0.0263	1,2295	I4 . 450		=20	2.2146	0,6994	14.648
CM	= 30	0.0141	0.7059	13,787		=30	2.5183	0.3704	14 .183
СМ	 =40	0.0009	0,2952	13.405	20 CM	= 40	2.6997	0.0978	13.890
J ■ X	≖ 50	0.0000	0.0000	13 . 117	H	=50	2.7739	0.0000	13.678
	=60	0.0000	0.2482	12.918	×	=60	2.7354	0.0705	13.480
	=7 0	-0.0094	0.5894	12.790		=70	2,5850	0.4174	13 .30 ï
	=80	-0.014I	I.2737	12.724		=80	2.3105	0.8723	13,135
	=90	-0.0282	2.1658	12.837	- -	=90	I.8791	İ.57I7	13,060
	=100	-0.1222	3,2637	13.890		= 100	I_2925	2.6160	13.824
		0.5000	0.000	18.005		-0	0 0053	0.0000	T6 /198
	=0	0.5828	0.0000	17.025		- [0	3 5147	0,0000	16 25/
	=10	0,6298	1,2728	15.604		=10	J.J.47	0.4409	10,294
	=20	0.8084	1.0340	14.413		=20	4.1134	0.3158	15.670
W	=30	0.9870	0,5828	13.815	W	=30	4.4622	0.1730	15.442
10 °	=40	I.0904	0.2040	13.452	30	=40	4.6427	0,0000	15.254
	= 50	1,1280	0.0000	13.220	X=	=50	4.7310	0.0000	15.122
	= 60	1.1289	0.2153	13.031		=60	4.6652	0.0000	14.915
	=70	1.0472	0.6683	12.894		=70	4.4782	0.0949	14.742
	=80	0,9052	1.2013	12.799		=80	4.1426	0.3544	14,516
	= 90	0.6909	1.9843	12.856		=90	3.5607	0.8178	14.230
	=100	0.4606	3,1499	13.815		=100	2.708I	1.7324	I4 .887

Таблица І

Плоскость Z = 20 см Г

.

÷.

.

Плоскость	Z ==	15 см	
-----------	------	-------	--

	Ү, _{СМ}	/H _x ,kG	H _y ,kG	H _z ,kG		Ү, _{СМ}	H ,kG	H _y ,kG	H _z ,kG
- · · ·	= 0		0.0000	I6 . 583		=0	I.6948	0,0000	16.442
×.	=10		0.6007	15,971			I . 7982	0.354	I5.942
	=20	н. 1. С.	0,6994	I5.I22		=20	2.0445	0,398	I5.282
X = 0 cM	=30		0.4418	14.591	1	=30	2.2645	0.209	I4 . 858
	=40		0.0818	14 . 239	C C C C	= 40	2.4017	0.000	I4 . 563
0 ·	= 50	-	0.0000	13.985	2 1	=50	2.4572	0.000	14.334
×	=60		0.0620	I3.796	×	=60	2.4224	9 .319	14.183
	=70		0,5950	I3.669		=7 0	2,2795	0.646	14.079
۰ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲	=80	• .	1.2878	I3.575		= 80	2.0370	I.0744	13.909
	=90		1,9759	13.669		=90	I.5002	16168	13.862
	=I00		2.4515	I4 . 296		= 1 00	1,1318	2.043	I4 . 305
	= 0.	0.6655	0.0000	I6 . 395		= 0	2.7946	0.0000	16,695
	=10	0,6909	0,5020	15.8II		<u>_</u> 10	2.9995	0.0000	16.498
=70 =80 =90 =100 =10 =20 =30 $\frac{5}{6}$ =40	0.8169	0.5743	15.0I8		=20	3.3238	0,0038	16.140	
	=30	0,9400	0,4399	I4.5I6	Σ	=30	3.5711	0.0000	15.895
CM	=40	1.0208	0.0658	14.192	с 30 20	=40 .	3.7083	0.0000	15,717
2	 =50	I.0669	0.0000	13.966	×	=50	3.7544	0.0000	15.548
×	= 60	1.0678	0,2876	13.777	a 1946 mar 19	=60	3.7027	0.280	15 . 385
	=70	1100.1	0 .77 46	13.650	浄んで利用した時に	=70	3,4949	0.428	15,206
	=80	0,8902	I <u>.2</u> 784	I3.537		=80	3.1443	0.711	15.018
X = 10 cm	, =9 0	0.7266	I.8997	13,594		=90	2.6517	I.0876	14.836
, di	=I00	0.4888	2.4346	I4.I45		=100	I.9242	I.3621	15.028

					•				
	¥, см	H , kG	H _y ,kG	H ",kG	*	Ү, _{СМ}	H _x , kG	H, kG	H _z ,kG
	= 0		0.0000	I6.479		= 0	I.5792	0.000	I6.677
	=10		0.163	16 . 196	20 cM	=I0	I.6412	0,000	I6.46I
	=20		0.327	I5.642		=20	I_8048	0.086	I6.II2
	=30		0.169	15 . 263		=30	I.9627	0.000	15.754
	=40		0.000	I4 . 952		= 40	2.0680	0.000	15,519
	 ≡50		0.000	I4 . 752	u	=50	2.1103	0.136	15,348
	=60	-	0.12I	I4.554	. x	≞ 60	2.0718	0.420	15,150
	= 70	х. Х	0.739	14.418		= 70	I.9505	0.744	14.990
	=8 0		I.3545	14.324		=80	I.7324	1.158I	I4 . 827
	=90		I.9486	14.318		=90	I.424I	1.5924	14,723
	=100		2.2645	I4 . 526		=I00	0.986I	1.833	I4 . 808
	= 0	0.6I48	0.000	I6.5I7		= 0	2.5201	0.000	17.100
	=I0	0.6383	0.082	16,253		01 =	2,6329	0.000	17.006
	=20	0.7257	0.229	15.726		= 20	2.8360	0.000	16.762
	=30	0.8178	0.067	15.329	7	= 30	3.0080	0.000	16.573
Ň	=40	0.8827	0.000	15.056	30 cì	=40	3.1274	0.000	16,376
2	=50	0.9127	e 01.0	14.858	. = X	=50	3.1518	0.116	16.234
×	=60	0.8977	0.389	I4 . 705		=60	3,0851	0.335	16.055
	. 70	0.8404	0.845	I4.507		=70	2.8642	0.518	15,839
	=80	0.7398	1.327	14.394		=80	2.4863	0.838	15.623
	=90	0.5828	1.865	14.365		=90	2.0586	1.169	15.423
	001=	0.3995	2.1864	14.544		±100	I.4777	1 . 26I	15.263

13

Плоскость $Z = 25$ см												
Ү,СМ	H _x ,kG	H _y , kG	H _z , kG		Ү,СМ	H _x ,kG	H,kC	H, LG				
= 0		0.000	16.611		= 0	I.4062	0.000	16.828				
=10		·0.04I	I6.339		=10	1,4626	0.000	16.733				
=20		0.185	16.130		 =20	I.5783	0.000	16.479				
=30		0.000	15.858		=30	I.6920	0.000	I6.273				
= 40		0.000	I5.65I	¥	=40	I.7663	0.000	16.083				
=50		0.000	I5.470	20 c	=50	I .77 28	0.231	I5.9I4				
=60		0.210	15.310	= X	=60	I.7258	0.529	15.754				
=70		0.785	15.188		=70	I.5924	0.854	15.576				
=80		I.363	15,065		=80	1,3884	1.264	15.404				
=90		178839	I4.962	•	= 90	1.1045	I.683	15.178				
=100		2.1639	14.789	-	001=	0.7501	1.8894	14.971				
= 0.	0 .5 452	0.0000	16.695		= 0	2.208I	0.000	I7.38I				
=10	0.5762	0.0000	I6,554		01=	2.2645	0.000	17.325				
= 20	0.6486	0.0489	16.28I		 ≥20	2.4055	0.000	17.212				
=30	0.7097	0.0000	I5.999	_	=30	2.4384	0.000	17.053				
= 40	0.7802	0.0000	15.783	0 0	=40	2.6160	0.127	16.865				
= 50	0.7708	0.2322	15,595	x= 3	=50	2.6320	0.268	16,761				
=60	0.7529	0.5048	15.451		= 60	2.5643	0.460	I6. 489				
=70	0.6862	0,9673	15,282		= 7 0	2.3650	0.671	16,329				
=80	0.5800	1,4222	15,159		=80	2.0248	1100.1	I6.065				
=90	0.4268	1,9082	Ï5.028		=90	1.6582	I.344	15.717				
=100	0.2406	2.195	14.915		001	I.1919	1.435	15.319				

			Плоскост	гь Z = 30	СМ				
	¥,см,	H_,kG	H , kG	H ,ŁG	*	YCM	H ,kG	H,,kG :	KH ,kG
	- 0		0.000	16 837		= 0	L.2323	0.000	17 193
	-10	-	0.000	16,780		= I0	I.2728	0.000	17.118
	=20		0.000	16.630		=20	I.3592	0.000	I7.025
	=30		0.000	16.470	0 см	=30	I.4542	0.000	16,912
0 0	=40		0.000	I6.329		=40	I.5I25	0.030	16.789
×	= 50	•	0.000	16.168	- 20	= 50	I.5200	0.300	16.620
	=60		0.301	I6.046	X	=60	1.47II	0.595	16.45I
•	=70		I.0020	15 . 9I4		=70	I.3639	0.939	16.290
	=80		I.505	I5 . 745		=80	I.1844	I.358	16.065
	=90		2.027	ï5 . 548		= 90	0,9485	I.8076	15.783
	=100		2.365	15.225		=I00	0.6749	2.06I	15.329
	= 0	0.4709	0.000	16 .9 2I		= 0	1,9007	0.000	17.494
	. <u></u> ⊒ï0 .	0.5001	0.000	I6.88 4		_I0	I.94I I	0.000	17.409
	=20	0.5480	0.000	16.733		=20	2.0473	0.000	17.344
	= 30	0.5969	0.000	16.6II		=30	2.1526	0.000	17.259
C W	=40	0.6298	0.000	16 . 45I	0 CM	=40	2.22 3 I	0.153	17.137
= 10	= 50	0.6373	0.357	16.301		_ 50	2.2372	0.337	17.006
×	=60	0.6082	0.606	16.159	×	≞6 0	2.1827	0.533	16.837
	=70	0.5527	1.0312	16.008		=70	2.0304	0.797	16.677
2	=80	0.4615	1.5031	15.811		=80	I.7785	I.153	16.385
	=90	0.3337	I.9966	15.510	-	=90	I.4739	-I . 520	15.999
	=100	0.1777	2.3180	15.244		001 <u>=</u> 100	I 0932	I.725	15.432

· ·

Плоскость Z = 40 см

Плоскость Z = 35 см

	1				ti	1				•										
	Ү , см	/H , LC.	H, LG	f ^H ₂,kC r		Ү,см	H _x ,kC	H, kG	, H ,kG ;			¥. см	H . FC	H,ŁG-	H _z , kC		Y , см	H	H, kG	H .LG
1	= 0		0.000	16.921		= 0	I.0904	0.000	17.344									0.0005	0	
	-01-		0.000	I6.893		=I0	I.126I	0.000	17.353			= 0	•	0.000	17,165		= 0	0,9325	0.000	17.503
-	=20		0.000	16.9I2		=20 I.2070 =30 I.2953	0.000	I7.363		-	=I0		0.000	17.231		=10	0.9701	0.000	17.559	
	=30		0.000	I6.884			I_2953	0.000	I7.344		:	=20		0.000	17.372		=20	I.0594	0.000	17.709
W	=40		0.000	I6.799	×	=40	I.3508	0.022	17.250		.	=30	÷	0.000	I7.475		=30	I.1553	0.000	17.756
0	=50		0.000	16.677	с , , ,	=50	I.362I	0.3I0	17.165	-`	CM	=40		0.000	I7.400	0 0	=40	I_2051	0.053	17.709
́Х	=60		0.654	I6.564	X=	=60	0.3254	0.605	17.015	} `		=50		0.000	I7.297	12	=50	I.205I	816.0	17.616
	=70	-	I.053	I6.46I		=70	I.2446	0.9785	I6.856		. *	=60	•	0.304	17.222	×)	=60	I.1722	0.606	17.512
× .	=80		T.58I	I6.376	i i i	-80	I.II58	I_444	16.658	1	• •	= 70		0.9776	I7.I28		=70	I.0998	0.9879	I7.38I
	≈ 90		2.178	I6.I40		=90	0.9278	I.9796	16.300			=80		I.549	I7.025		<i>=</i> 80	0.9917	I.495	17.19 4
	-T00		2 634	34 15 538		-100	0 6823	2 392	15 632			=9 0		2,2992	16.743		=90	0.8200	2.1827	I6.837
	-200		2.001			-100	0.0015	2.552			•	=I00		2.9958	16.008		=100	0.6458	2.8689	16.018
										•	<u> </u>									
	=0	0.4033	0.000 ·	17.109		= 0	1.6976	0.000	17.700				0.0070	0.000	17 000		<u> </u>	T STON	0.000	
	=10	0.4305	0.000	17.109		_ ⊥0	1.7371	0.000	17.700 17.719			= 0	0.2970	0.000	11.222		= 0		0.000	17.784
, i	=20	0.4691	0.000	17.128	•	= 20	I.8368	0.000			, - ,	=10	0.3243	0.000	17.300		=10	1.0001	0.000	17.849
W	=30	0.5114	0.000	17,100	CW	=30	I.9402	0,000	17.653		. ,	=20	0.3610	0.000	17.466		=20	1.0092	0.000	17.934
10	<u>=</u> 40	0.5358	0.000	16.978	30	=40	2.003	0.143	17.569		×	=30	0.3957	0.000	17.569	CM	0ز =	1.8180	0.000	17.934
۳ ۲	= 50	0,5396	0.227	I6.856	×	=50	2.0107	0.347	17.419		10 0	=40	0.4155	0.000	17.503	= 30	=40	1.8875	0.156	17.859
	=60	0.5085	0.592	I6.743		=60	1,9580	0.570	17.269		۲ ۲	=50	0.4I27	0.230	17.381	×	=50	1,9007	0.362	17.756
	=70	0.4512	I.0509	16,583		=70	I.8405	0.874	17.062			=60.	0.4070	0.577	17.278		=60	I.8612	0.623	17.634
	=80	0.3694	1.547	16.470		=80	1.644I	I.293	I6.790			= 70	0.375I	I.0845	17.194		=70	1.7672	0.9635	17.456
	=90	0.2463	2.137	16.177		=90	I.3827	1.754	16.376			=80	0.3158	1.6I55	17.072	-	=80	I.6243	1.445	17.194
	=100	0.I39I	2.606	15,566		=Ï00	£100.1	2.122	15,623			=90	0.2378	2,3058	16.770		=90	I.4185	2.024	16,780
	1											I00	0.1288	3.044	810.01		=I00	I.II77	2.63Ï	15.924

16 .

17

÷.

