

А.Т. Матюшин, В.Т. Матюшин, Л.В. Сильвестров

## АНАЛИЗ НЕКОТОРЫХ ХАРАКТЕРИСТИК ИСКРОВЫХ КАМЕР

1967.

13 - 3518



А.Т. Матюшин, В.Т. Матюшин, Л.В. Сильвестров

## АНАЛИЗ НЕКОТОРЫХ ХАРАКТЕРИСТИК ИСКРОВЫХ КАМЕР

объединовный инстатур васрым выспедований ЕМБЛИСТЕКА Анализ характеристик искровых камер позволяет получить информацию о некоторых процессах в ионизованном газе. Для применяемых газовых смесей можно определить такие величины, как коэффициент ионизации, скорость дрейфа ионов и электронов в постоянных электрических полях, сечение захвата электронов молекулами электроотрицательных газов и вероятность образования лавины критической длины в импульсном электрическом поле.

Рассмотрим счётные характеристики искрового счётчика в режиме питания постоянным напряжением.

Коэффициент ионизации а (число ионов, создаваемых электроном на пути в 1 см) можно определить из уравнения пробоя Мика, которое связывает критическую величину поля лавины Е , необходимую для развития стримера, с величиной внешнего поля Е . Записывая приближенное выражение для поля головки лавины (<sup>/1/</sup>, стр. 403), получим уравнение Мика в виде:

$$kE = \frac{\frac{4}{3} \epsilon a e^{a\delta}}{(1010 \frac{2 \times \lambda_o}{3 p \sqrt{f}})^{\frac{1}{2}}}, \qquad (1)$$

где а -коэффициент ионизации,  $\epsilon$  -Заряд электрона,  $\delta$  -длина пути лавины, на которой ее поле достигает критического значения  $E_{A}$ , х -путь, пройденный лавиной,  $\lambda_{0}$  -средний свободный пробег электронов в газе,

р-давление газа, f-доля энергии, теряемой электроном при столкновении, k-коэффициент, значение которого находится в пределах 0 < k ≤ 1 .

Хотя параметры k, A , и f неизвестны для газовых смесей, приме-

нявшихся нами при наполнении искровых камер, однако, учитывая, что величина а мало чувствительна к изменению этих параметров (при решении уравнения они войдут под знаком логарифма), можно принять их значения такими же как для воздуха, для которого они определены экспериментально. Заменяя, кроме того, коэффициент а на его приведенное значение, получим уравнение пробоя в виде /1/:

$$0,1 - \frac{E}{p} = 5,27 \cdot 10^{-7} \left(\frac{\delta}{p}\right)^{\frac{1}{2}} \left(\frac{\alpha}{p}\right) \exp \frac{\alpha}{p} \delta p.$$
(2)

Заметим теперь, что эффективность искрового промежутка η связана с критической длиной лавины δ выражением /4/

$$\eta = 1 - \exp\left[-\nu \frac{1}{\cos\theta} \left(d - \delta\right)\right], \tag{3}$$

где θ - угол входа частицы относительно нормали к электродам, ν -удельная ионизация, d -длина искрового промежутка. Подставляя δ из выражения (3) в уравнение (2) и решая последнее графически, получим величину  $\frac{a}{p}$  для данного значения внешнего поля E.

**1**. Найдем значение  $\frac{a}{p}$  для смеси аргон + эфир при разных соотношениях давления аргона и эфира. Для этого воспользуемся характеристиками искрового счётчика, наполненного соответствующей газовой смесью и питаемого постоянным напряжением. При расчётах принималось, что в начале "илато" счётчик считает частицы со 100%-ной эффективностью. Удельная ионизация  $\nu$  для смеси газов рассчитывалась, исходя из формулы Блоха /6/. Некоторая неопределенность в значениях  $\eta$  и в параметрах, входящих в уравнение (1), вносит примерно 20%-ную неопределенность в значения коэффициента ионизации  $\frac{a}{p}$ . Следует отметить, однако, что измерения  $\frac{a}{p}$  классическими методами дают точные и воспроизводимые значения только для газов, подвергшихся специальной тщательной очистке. Для неочищенных газов значения  $\frac{a}{p}$ , полученные в разных измерениях, имеют разброс примерно того же порядка, что и приведенный выше.

Величины <u>а</u>, полученные при разном значении <u>E</u>, можно привести к одному значению поля, пользуясь хорошо известным эмпирическим соотношением между величиной <u>а</u> и <u>E</u>:

4

$$\frac{a}{P} = A \cdot \exp\left(-\frac{B}{E/P}\right)$$
(4)

На рис. 1 показаны значения р при разном содержании эфира в аргонэфирной смеси для величины приведенного поля E/p = 30 в/см.тор. На рис. 2 дана кривая р f(E), полученная для эфира. Для сравнения приведена кривая для спирта, взятая из работы<sup>/2/</sup>.

2. Рассмотрим случай импульсного питания искровой камеры. Как показано в 3/, эффективность искрового промежутка в этом случае равна

$$\eta = 1 - \exp\left[-\nu \ \mathrm{fd} + \nu \,\mathrm{f\omega} \,(\mathrm{E}_{\mathrm{c}}) \,\mathrm{T}_{\mathrm{D}} - \nu \,\mathrm{f}_{\mathrm{0}}^{\mathrm{T}_{\mathrm{f}}} \,\omega \,\mathrm{\{E(t)\}\,dt}\right], \tag{5}$$

где ν - удельная ионизация в газе камеры, d - величина междуэлектродного промежутка, f - вероятность образования лавины критической длины одним электроном, ω (E<sub>o</sub>) и ω (E) - скорости дрейфа электронов в газе при значении очищающего поля E<sub>o</sub> и импульсного поля E, T<sub>D</sub> - время задержки высоковольтного импульса, T<sub>o</sub> - время формирования иск**ры**.

По формуле (5) была рассчитана эффективность искровой камеры с зазором в 1 см, наполненной неоном. Импульс высокого напряжения приближенно можно было считать прямоугольным с шириной 1,2 мксек. В случае импульса прямоугольной формы и отсутствия очищающего напряжения выражение (5) упрощается и принимает вид:

$$n = 1 - \exp\left[-\nu f d - \nu f \omega(E) T_{f}\right]$$
(6)

На рис. З приведена зависимость эффективности искрового промежутка от амплитуды высоковольтного импульса вместе с результатами расчета по формуле (6). Расчетная кривая согласуется с экспериментальными данными в начале счетной характеристики, если принять величину f = 0,2 (  $\nu = 20$  ). Это сравнимо с величиной f, приведенной в работе <sup>/3/</sup> для искровой камеры, наполненной смесью неона с парами спирта. Расхождения между расчётными и экспериментальными точками при бо́льших напряжениях можно янтерпретировать как изменение величины f с возрастанием поля E (с возрастанием поля f возрастает).

5

3, При наличии очищающего поля эффективность камеры будет зависеть от величины поля и времени задержки высоковольтного импульса. Величину  $\omega$  (E<sub>0</sub>) T<sub>D</sub> с хорошим приближением можно записать в виде  $K_{\star}\sqrt{E \cdot T_{\rm p}}$ , где  $K_{\star}$ -подвижность электронов. На рис. 4 приведена зависимость эффективности искровой камеры от параметра  $\sqrt{E.T.}$ Экспериментальные точки хорошо описывают выражением (5), в котором принято f = 0,2 и  $K_{\rm e}=0,12\frac{cM}{2}$ 

На рис. 5 представлена скорость дрейфа зарядов как функция  $\sqrt{\frac{E}{p}}$  для случая воздушного наполнения искровой камеры <sup>777</sup>. Видно, что скорость становится линейной функцией  $v = K_u \sqrt{\frac{E}{p}}$ , начиная с величины поля ≈1в/см.тор. Это явление характерно для дрейфа конов. Коэффициент пропорциональности  $K_u$  (подвижность ионов) в нашем случае равен 1,35  $\frac{CM}{B^3CeK}$ .

4. Как показано в работе , время памяти искровой камеры можно уменьшить, если добавить к газу камеры пары ацетона. Молекулы ацетона, обладающие электронным средством, захватывают свободные электроны и очищают таким образом промежуток. Из кривой, показывающей зависимость эффективности промежутка от задержки высоковольтного импульса r, можно оценить сечение захвата электронов молекулами ацетона. Согласно работе  $^{5/}$  захват электронов происходит при тепловых энергиях. Если средняя скорость электронов равна  $\bar{\mathbf{v}}$ , то пробег до захвата каждого электрона будет  $\mathbf{L} = \bar{\mathbf{v}} \cdot \mathbf{r}$ , а сечение захвата  $\sigma = \frac{1}{\mathbf{L} \cdot \mathbf{N}}$ , где N – число молекул ацетона в 1 см<sup>3</sup>. Взяв величину r из работы  $^{7/}$ , а  $\bar{\mathbf{v}}$  из выражения для среднеарифметической скорости электронов $\mathbf{v} = \sqrt{\frac{8kT}{\pi m}}$ , получим величину сечения  $\sigma = 3,4.10^{-20}$  см<sup>2</sup>.

Авторы благодарят И.М.Граменицкого за многочисленные обсуждения, касающиеся кинетической теории газов.

## Литература

 Л.Леб. Основные процессы электрических разрядов в газах. М.Гостехиздат, 1950.

- 2. А.Энгель. Ионизованные газы. Москва, 1959.
- U.J.Burnham, I.W.Rogers, M.G. Thomson, A.W.Wolfendale. Jom.Scien.Instr. 40 (1963) 296.
- 4. F.Bella, C.Franzinetti, Nuovo Cim. 10 (1953) 1338.

- 5. И.Н.Громова, В.Н.Никаноров, Г. Петер, А.Ф.Писарев, Препрянт ОИЯИ Р-1498, Дубна, 1964.
- 6. Bloch. Ann.d. Phys. 16, 285 (1933).
- 7, A.S.Dvoretski e.a. Nucl.Instr. and Meth. 20, 277 (1963).

Рукопись поступила в издательский отдел 22 сентября 1967 года.



Рис. 1. Зависимость коэффициента ионизации р от содержания эфира в эфир-аргонной смеси. По оси абсцисс отложено процентное содержание эфира в смеси. По оси ординат – величина нию электрического поля 30 в/см.тор. Сплошным кружком обозначена величина <u>а</u> для чистого аргона, взятая из работы/4/.



Рис. 2. Зависямость  $\frac{a}{p}$  от  $\frac{E}{p}$  для эфира. Кривая для спирта взята из работы/4/.



Рис. 3. Зависимость эффективности искрового промежутка от амплитуды высоковольтного импульса. Экспериментальные точки:  $\eta_2$  - для одного промежутка,  $\eta_1$  - усредненная эффективность пары промежутков. Сплошная кривая - расчёт по формуле (6).



Рис. 4. Зависимость эффективности искрового промежутка от параметра  $\sqrt{E}_{e}T_{D}$ . Сплошная кривая – расчёт по формуле (5).



Рис. 5. Скорость дрейфа отрицательных конов в воздухе как функция  $\sqrt{\frac{E}{p}}$ .