

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Дубна

13 - 3380

К.А. Гаврилов, Ю.С. Короткин, Я. Шукуров

ОЧИСТКА ЛАНТАНА И АМЕРИЦИЯ ОТ МИКРОКОЛИЧЕСТВ СВИНЦА, ОПРЕДЕЛЯЕМЫХ АКТИВАЦИОННЫМ МЕТОДОМ С ПОМОЩЬЮ УСКОРЕННЫХ ТЯЖЕЛЫХ ИОНОВ

13 - 3380

К.А. Гаврилов, Ю.С. Короткин, Я. Шукуров

ОЧИСТКА ЛАНТАНА И АМЕРИЦИЯ ОТ МИКРОКОЛИЧЕСТВ СВИНЦА, ОПРЕДЕЛЯЕМЫХ АКТИВАЦИОННЫМ МЕТОДОМ С ПОМОЩЬЮ УСКОРЕННЫХ ТЯЖЕЛЫХ ИОНОВ

5183/2 mp

Введение

По мере продвижения в область все более далеких трансурановых элементов существенно возрастают трудности их идентификации химическими методами. Это связано в первую очередь с тем, что ядра тяжелых трансурановых элементов имеют очень короткие времена жизни (десятые доли секунды). Поэтому в настоящее время для далеких трансурановых элементов используется физический метод идентификации изотопов. Важным моментом этого метода яв – ляется измерение энергии и периода полураспада а -радиоактивных продуктов.

В этих условиях очень большое значение имеет чистота материала мишеней и материала подложки относительно таких примесей (Ві, Рь., Т1), которые могут при взаимодействии с тяжелыми ионами давать а -радиоактивные продукты, затрудняющие идентификацию трансуранового элемента.

Опыты по исследованию плутониевых мишеней на присутствие примесей , Рь и На, проведенные в экспериментах по синтезу 102-го элемента. BI показали, что при бомбардировке этих элементов ионами углерода и кислорода могут образовываться радиоактивные изотопы Аt , Rn , Fr , Ra и др. < 8 Мэв /1,2/ и имеющие коэлементов, обладающие энергией а -распада роткие периоды полураспада. Так, например, в опытах по облучению висмута ионами кислорода наблюдались, кроме двух групп а -частиц с энергией 6,0+0,2 Мэви 7,5+0,2 Мэв, еще а -частицы с энергией около 9 Мэв, число которых примерно в 10³ раза меньше, чем количество а-частиц с энергией 7,5 Мэв. В этой же серии опытов облучали естественную смесь изотопов свинца ионами кислорода. В приведенном авторами спектре а -частиц имеются

а-частицы с энергией - 9 Мэв. Причем сечение образования изотопа, испускающего а -частицы с этой энергией, оказалось достаточно большим (- 10⁻²⁹ см²). В более поздней работе по синтезу трансурановых элементов также было показано, что присутствие свинца в мишенях является основным мешающим фактором, т.к. при облучении свинца тяжелыми ионами возникают с большим сечением радиоактивные продукты, испускающие несколько групп

а -частиц с энергией больше 8 Мэв/3/.

Наличие примеси свинца в веществе мишени в количествах десятых или даже сотых долей микрограмма может полностью скрыть эффект синтезированного трансуранового элемента.

Экспериментальная часть

Для проверки чистоты мишеней и различных реактивов относительно свинца в настоящей работе был использован активационный метод его определения с использованием ускоренных ионов углерода с последующей регистрацией наведенной а-активности.

Определение свинца в мишенях производилось по изотопу радона -212, который имеет период полураспада 23 минуты, вследствие чего эта методика является более удобной, чем использованная в работе $^{/2/}$, где присутствие следовых количеств свинца в мишени определялось по радиоактивному изотопу радона-211. Изтоп R_n^{211} имеет относительно большой период полураспада (16 часов). Поэтому для накопления его в достаточном количестве необходимо проводить длительное облучение.

В наших экспериментах радиоактивный изотоп радона-212 получается в результате альфа-распада короткоживущего изотопа радия-216, возникающего с большим сечением при облучении свинца ускоренными ионами углерода-12.

Анализ проводился на ускорителе У-150 Лаборатории ядерных реакций ОИЯИ.

Методика проведения анализа заключалась в следующем. Мишень, помещенная в камеру, наполненную инертным газом (аргоном) при давлении 0,15-0,20 атм, облучалась ускоренными ионами углерода. Ядра отдачи, возникающие при взаимодействии ядер мишени и налетающих частиц, выбивались

из мишени в газовый объем, тормозились в нем и осаждались на его стенки. Алюминиевая фольга – сборник размером 1,2 см х 3,7 см, покрывающая внутренние стенки газового объема, после окончания облучения вынималась из камеры и обсчитывалась. Эффективность сбора ядер отдачи радона-212 равнялась 20%. Для регистрации альфа-частии использовался кремниевый поверхностно-барьерный детектор с рабочей площадью 1,5 см² и с энергетическим разрешением 30 кэв для альфа-ливии америция-241 и кюрия-244, помещаемый на расстоянии 5 мм от алюминиевого сборника. При этом обсчитывалась примерно 1/3 его часть. При такой геометрии опыта эффективность альфа-счета радона-212 равнялась ~ 30%.

Интенсивности а -частии, наблюдаемых в спектрах, существенно зависят от временного режима накопления и счета активности. В данной серии опытов время накопления выбиралось равным двум полупериодам распада для Ru²¹² (45 минут), а обсчет сборника ядер отдачи начинался через 12 минут после окончания облучения и длился 30 минут. В случае нарушения временного режима вводились поправки с учетом периода полураспада Ru²¹². В качестве эталона использовалась мишень, содержащая известное количество свинца. Чувствительность метода при указавных выше условиях равнялась 10⁻⁸ г свинца.

Метод изготовления циклотронных мишеней включает в себя использование материала подложки, вещества мишени и больших количеств различных химических реактивов. В связи с этим необходимо было проанализировать каждую компоненту в отдельности на присутствие в ней свинца.

В табл. 1 показано содержание свинца в мкг/см² для различных алюминиевых фольг, определенное при облучении иоками углерода.

В табл. 2 приведены результаты анализов на содержание свинца в химических реактивах, используемых в процессе изготовления мишеней без дополнительной очистки от свинца,

В известных в настоящее время экстракционных системах поведение свинца аналогично поведению трехвалентных трансурановых элементов или близко к нему. ^{/7/} В результате этого экстракционным методом трудно добиться высокой очистки америция от примесей свинца.

Исходя из литературных данных по равновесным коэффициентам распределения лантана, америция и свинца в соляной кислоте на катионите^{/6/} и анионите^{/4,5/} мы выбрали для очистки метод ионообменной хроматографии. Во всех опытах применялись ионообменные смолы одной партии: катионит Дауэкс-50х8

δ

и анионит Дауэкс-1х8 (размером зерна 0,04 мм, размеры колонок стандартные-4х80 мм). Вся рабочая посуда была изготовлена из кварца и тефлона. Перед каждым опытом посуда тшательно мылась кислотами и дитизоном. Вместе с этим была проведена проверка смол на содержание в них свинца. Для этого проводилось полное сжигание определенной навески смолы с последующей химической обработкой и анализом угольного остатка. В результате было установлено, что содержание свинца в используемых нами смолах - катйоните и анионите не превышает 0,1 мкг на 1~ смолы. Условия очистки на хроматографических колонках выбирались по опытным данным для коэффициентов распределения лантана, америция и свинца в соляной кислоте на анионите^{/4,5/}и катионите^{/8/}. Отработка методики проводилась на лантане, ионообменные свойства которого в условиях опытов близки к свойствам америция. В каждом одыте использовалось по 6 мг лантана, в который добавлялось 30 мкг свинда.

Лантан и свинец адсорбировались на анионите или катионите из 2н HCL, вымывание также проводилось ²н HCL. При этом с катионита сначала вымывался свинец (Kd_{Pb} = 10), а затем лантан (Kd_{La} = 50), с анионита лантан вымывался двумя свободными объемами²н HCL, в то время как свинец оставался на смоле (Kd_{Pb} = 24, максимум сорбции).

На катионите условия разделения лучше в 1 н HCL (Kd_{La} = 265, Kd_{Pb} = 35), чем в 2 н HCL, однако для этого расходуется большое количество кислоты. Кроме того, для последующей очистки на анионите нужно было бы переводить лантан из 1 н HCL в 2 н HCL, что связано с возможностью загрязнения лантана свинцом.

Результаты опытов представлены в таблицах 3 и 4. Как видно из таблиц, полученные козффициенты очистки лантана от свинца значительно ниже коэффициентов, рассчитанных по литературным данным $^{/4-6/}$. Это вызвано, вероятно, тем, что данные, использованные для расчетов, получены для нескольких десятков миллиграммов свинца и лантана в равновесных условиях. Как известно $^{/4/}$, в 2 н HCL . где свинец существует в виде Pb Cl $_{3}^{-}$ и Pb Cl $_{4}^{--}$, есть некоторое количество ионов Pb Cl $^+$ и Pb Cl $_{2}^{0}$, которые не адсорбируясь проходят через анионит вместе с лантаном и америцием. К тому же, как видно из таблицы 3, коэффициент очистки лантана от свинца падает с 20 после первого цикла до 2 и ниже для последующих циклов очистки на анионите. Этим и объясняется трудность достижения высокой стелени очистки лантана и америция

от микроколичеств свинца. Но при применении последовательно катионного и анионного обмена нам удалось достигнуть высокой степени очистки (10⁻⁸г) миллиграммовых количеств лантана и америция от свинца. Если применение анионной колонки за один цикл дает коэффициент очистки в 2^н HCL 30, то, используя последовательную очистку на катионите и анионите, его можно довести до 5.10². Из америция, очищенного таким методом, были изготовлены циклотронные мишени с содержанием свинца 0.01 мкг на 1 мг америция.

В заключение авторы выражают благодарность профессору Г.Н. Флерову за постоянное внимание, доктору И.Зваре за ценные советы при обсуждении результатов, а также группе эксплуатации У-150 за обеспечение бесперебойной работы ускорителя.

Литература

1. Г.Н. Флеров, С.М. Поликанов и др. ДАН СССР, 120, 73 (1958).

2. Г.Н. Флеров, С.М. Поликанов и др. ЖЭТФ, <u>38</u>, 82 (1960).

3. Г.Н. Флеров, С.М. Поликанов и др. Препринт ОИЯИ, Р7-3059. Дубна, 1966.

4. F.Nelsoh, K.A.Krays. J.Am.Chem.Soc., 76, 5916 (1954).

5. F.Nelson, K.A.Krays. J.Am.Chem.Soc., 82, 339 (1960).

6. F.W.E.StreIow. Anal.Chem., 32, 1185 (1960).

7. I. Stary. The Solvent Extraction of Metol Chelates. Pergamon Press, 1964.

Рукопись поступила в издательский отдел 13 июня 1967 г.

Таблица 1

Содержание свинца в алюминиевых фольгах

	№ образца	Толщина, мк	Содержание Рь, мкг/см ²	
	1	7	≤ 0,02	
-	2	6	0,03	
Ċ	3	6	0,03	
· · .	4	7	0,04	•
_				

Таблица 2

Результаты анализов на содержание свинца в химреактивах, используемых в процессе изготовления мишеней без дополнительной очистки от свинца

№ пп	Ре	актив	Объем пробы в миллилитрах	Содержание Рь, мкг
1.	H_0	(бидистиллят)	100	0,07
2.	HCL	(особой чисто- ты)	100	0,12
3.	HNO 3	(особой чисто- ты)	- 100	≤ 0,02
4.	Ле	a K	100	1,20

x/3% -раствор нитроклетчатки в амилацетате, ацетоне, спирте.

Таблица З

Очистка лантана от свинца на анионите Дауэкс-1х8

№ пп	Образец La 203 + (6 мкг) Рь	Содержание Рь, мкг	Толщина мише- ни, мг/см ²
1.	Без очистки	6,00	0,4
2.	После 1-й очистки	• 0,34	_ * _
3.	После 2-й очистки	0,19	_ * _
4.	После 3-й очистки	0,08	
5.	После 4-й очистки	0,05	_ ″ _

Последовательная очистка лантана от свинца на анионите и катионите (Дауэкс-1х8 и Дауэкс-50х8 из 2н НСL).

Таблица

№ пп_	Образец La ⁺⁸ + (1 мкг) Рь	Содержание Рь, мкг	Толщина ми- шени мг/см ²	Примечание	
1.	Без очистки	1,0	1,1	Содержание лантана в исходном образце	
2.	После 1-й очист- ки на анионите	0,038	1,3		
3.	После 2-й очист- ки на катионите	0,016	1,14		
4.	После 1й очист- ки на катионите	0,03	1,0	•	
5.	После 2-й очист- ки на катионите	0,02	1,0	Содержание ланта-	
6.	После 3-4 после- довательных очис- ток на анионите	0,01	1,0	на в исходном об- разце взято 6 мг, свинца 30 мкг.	

х/ Применение анионита после катионита вызвано тем, что для очистки на ионитах применялась кислоты недостаточной чистоты.