

13 - 3101

Б.В. Фефилов

ГРАФИЧЕСКИЙ РАСЧЕТ УРОВНЯ ШУМА СПЕКТРОМЕТРИЧЕСКИХ УСИЛИТЕЛЕЙ НА ЛАМПАХ И ПОЛЕВЫХ ТРАНЗИСТОРАХ

13 · 3101

Б.В. Фефилов

ГРАФИЧЕСКИЙ РАСЧЕТ УРОВНЯ ШУМА СПЕКТРОМЕТРИЧЕСКИХ УСИЛИТЕЛЕЙ НА ЛАМПАХ И ПОЛЕВЫХ ТРАНЗИСТОРАХ

Для сравнения различных схем усилителей по величине собственного приведенного ко входу шума наиболее удобной единицей шума является среднеквадратичное число шумовых зарядов (\bar{N}_{III}) , не зависящее от типа используемого детектора ядерных излучений. Однако в ядерной электронике целью определения шума является, в конечном результате, определение ошибки измерения энергии регистрируемой частицы. Поэтому для системы детектор-усилитель величину шума удобнее всего определять в единицах энергии /1/ как полную ширину на половине высоты кривой спектрального распределения фиксированного заряда на входе усилителя (Δ), называемую также "шириной линии шума".

Взаимосвязь единиц измерения шума можно представить следующими выражениями:

число шумовых зарядов
$$\overline{N}_{III} = \overline{Q}_{III} / q = \frac{\overline{U}_{III}C}{q}$$

в среднеквадратичных электронах или электронно-дырочных (ионных) парах,

(1)

(3)

ширина линии шума $\Delta = \sigma \xi \vec{N}_{III}$ (2) в электроновольтах.

Здесь $\vec{Q}_{\rm III}$ -величина шумового заряда в среднеквадратичных кулонах, $\vec{U}_{\rm III}$ величина шума в среднеквадратичных вольтах, $q = 1,6.10^{-19}$ кул – заряд электрона, С – общая входная емкость в фарадах, $\sigma = 2,36$ для Гауссового распределения, ξ -среднее значение энергии, расходуемой на образование пары. Для кремниевых полупроводниковых детекторов

$$A^{SI} = 2,36 \cdot 3,6 \overline{N}_{III} = 8,5 \overline{N}_{III}$$

для германиевых полупроводниковых детекторов

Основные источники шума усилителей на лампах, биполярных транзисторах и полевых транзисторах достаточно хорошо описаны в литературе /2-9/. Для спектрометрических измерений на полупроводниковых детекторах ядерных излучений во входных каскадах предусилителей с предельно низким уровнем шума могут быть успешно применены в настоящее время только лампы и полевые транзисторы. Обычные биполярные транзисторы пока имеют уровень собственного шума на порядок выше. Целью настоящей работы является попытка свести довольно сложный и громоздкий расчет приведенного ко входу шума системы детектор-усилитель на лампах и полевых транзисторах до уровня простых таблиц и номограмм.

 $\Delta^{\mathbf{Ge}} = 2,36 \cdot 2,95 \,\overline{\mathrm{N}}_{\mathrm{III}} = 7 \,\overline{\mathrm{N}}_{\mathrm{III}}$

Положение облегчается тем, что основные источники шума ламп и полевых транзисторов описываются подобными выражениями:

1. Среднеквадратичное значение дробового шума лампы или теплового шума канала полевого транзистора, отнесенное ко входу,

$$\overline{U}_{\text{III}a}^2 = 4 \, \mathrm{kTR}_{\text{IIII}a} \, \Delta \omega / 2 \, \pi \quad , \qquad (5)$$

(4)

x

где $R_{IIIA} = \frac{M}{S}$ (для ламп M = 3 - 5, для полевых транзисторов M = 0,5-0,7в зависимости от режима).

2. Среднеквадратичное значение шума сеточного тока лампы или тока затвора полевого транзистора

$$\overline{U}_{III}^2 = 2q l_g \frac{\Delta \omega}{\omega^2 C^2} , \qquad (6)$$

где lg в общем случае включает в себя также суммарный ток утечки и генерации в объеме полупроводникового детектора (I_Д), а С – суммарная входная емкость усилителя вместе с емкостью монтажа и детектора.

3. Среднеквадратичное значение шума входного сопротивления при $R \gg 1/\omega\,C$

$$-\frac{\overline{U}^2}{\overline{U}R} = \frac{2kT}{\pi R} \cdot \frac{\Delta \omega}{\omega^2 C^2} , \qquad (7)$$

где R в общем случае представляет собой параллельное соединение внутреннего сопротивления детектора, сопротивления смещения и сопротивления утечки в цепи сетки лампы или затвора транзистора. Если R $>> \frac{2\,k\,T}{q\,l_g}$, то вклад шума от R незначителен.

4. Среднеквадратичное значение фликкер-шума

$$\tilde{U}_{\text{III}}^{2} = A \frac{\Delta \omega}{\omega} . \tag{8}$$

Обычно для ламп $A = 10^{-13} \text{ кул}^2/\pi\phi^2$, а для современных полевых транзисторов с низким уровнем шума коэффициент $A \approx 10^{-15} \text{ кул}^2/\pi\phi^2$.

Таким образом, эквивалентная схема входной цепи спектрометрического предусилителя на лампах и полевых транзисторах, включающая приведенные ковходу вышеперечисленные источники шума, может быть представлена в общем виде на рис. 1.

Для наиболее распространенной схемы зарядового предусилителя, собранного по каскодной схеме с емкостной отрицательной обратной связью, самое общее выражение для R /8/:

$$R_{IIIA} = \frac{M}{S} \left(1 + \frac{C_{ag}^2}{C_1^2} \right) + R_{F'} \left(\frac{C_{\pi} + C_0}{C} \right) + R_{\pi} \left(\frac{C_{\pi}}{C} \right)^2, \quad (9)$$

где R_г - противогенерационное сопротивление в цепи управляющей сетки (затвора),

R_п - последовательное сопротивление детектора,

$$C = C_{\mathcal{I}} + C_{M} + C_{0} + C_{gk} + C_{ag}$$
$$C_{1} = C_{\mathcal{I}} + C_{M} + C_{gk} ,$$

Со - емкость обратной связи.

Для полевых транзисторов, в зависимости от режима рабочей точки, справедливы следующие выражения:

$$R_{IIIA} = \frac{1}{2S} \cdot \frac{1 + 3z^{\frac{1}{2}}}{1 + 2z^{\frac{1}{2}}}; \quad z = \frac{U_{gs} + U_{dif}}{U_0};$$

 $C_{gs} + C_{gd} = C_{g0} \frac{(1 + z^{\frac{1}{2}})}{(1 + 2z^{\frac{1}{2}})^2}$

 $S = S_0 (1 - z^{\frac{1}{2}})$

В зависимости от $\frac{C_{\text{внешн}}}{C_{qo}}$ имеется оптимальное значение z_{ont} , например, для $\frac{C_{\text{внешн}}}{C_{qo}} = 0-5$, $z_{ont} = 0.34 - 0$.

Несмотря на сравнительно простые выражения для R_{Ша} и I_g, точный расчет шума может быть произведен только после экспериментального измерения этих параметров. Сравнительно простая методика измерения R_{Ша} и I_g описана в работе /10/.

Сигнал и компоненты шума имеют различный спектральный состав и усиливаются усилителем по-разному. В спектрометрических усилителях для увеличения отношения сигнала к шуму применяются формирующие цепи, ограничивающие полосу частот сверху и снизу (интегрирующие и дифференцирующие цепочки). Поэтому при расчетах приведенного ко входу шума необходимо учитывать коэффициент передачи цепей, ограничивающих полосу частот усилителя, как для компонент шума, так и для сигнала. Если Р -коэффициент передачи формирующих цепей для заданной формы сигнала, а $\vec{U}_{\rm шBX}(\omega)$ – суммарный приведенный ко входу щум, то

$$\overline{U}_{\rm III} = P \cdot \overline{U}_{\rm III} \omega \qquad (10)$$

это среднеквадратичная величина приведенного ко входу и нормализованного по сигналу шума, которая и будет фигурировать в дальнейших расчетах.

Коэффициент передачи усилителя, имеющего и интегрирующих и т дифференцирующих RC-делей,

$$K(\omega) = \frac{U_{BMX}(\omega)}{U_{BX}(\omega)} = \frac{(\omega \tau_{\Pi})^{m}}{(1+\omega^{2}\tau_{H}^{2})^{n/2}(1+\omega^{2}\tau_{\Pi}^{2})^{m/2}}$$

Каждый источник шума дает на выходе усилителя соответственно свой вклад:

$$\overline{U}_{\text{III BMX}}^{2}(\omega) = \overline{U}_{\text{III BX}}^{2}(\omega) K^{2}(\omega) d\omega =$$

$$= \overline{U}_{111}^{2} B_{X}(\omega) \int_{0}^{\infty} \frac{(\omega r_{\mu})^{m}}{(1 + \omega^{2} r_{\mu}^{2})^{n/2} (1 + \omega^{2} r_{\mu}^{2})^{m/2}} d\omega .$$

Коэффициент передачи для сигнала, имеющего форму скачка потенциала, можно вычислить, пользуясь операторным методом:

$$K(p) = \frac{U_{BbIX}(p)}{U_{BX}(p)} = \left(\frac{1}{1+pr_{H}}\right)^{\overline{n}} \cdot \left(\frac{pr_{\Pi}}{1+pr_{\Pi}}\right)^{\overline{m}}$$
$$U_{BX}(p) = \frac{U_{BX}}{p} ; \qquad U_{BbIX \max} = P \cdot U_{BX}$$

На основании вышеприведенных выражений были рассчитаны приведенные ко входу нормализованные по сигналу шумы в среднеквадратичных электронах для усилительного тракта, имеющего формирующие RC – цепи с одинаковыми значениями постоянной времени $r_{\rm H} = r_{\rm d} = t$ (оптимальный случай для отношения сигнала к шуму):

$$\overline{N}_{III_{11}} = 2,7 \left(\frac{k TR_{IIIA}}{2\tau} \cdot \frac{C^2}{q^2} + \frac{I_g \tau}{4q} + \frac{kTr}{2q^2 R} + \frac{A}{2} \cdot \frac{C^2}{q^2} \right)^{\frac{1}{2}}, \quad (11)$$

$$\overline{N}_{III_{21}} = 3.7 \left(\frac{k T R_{III} a}{8\tau} \cdot \frac{C^2}{q^2} + \frac{3 I_g \tau}{16 q} + \frac{3 k T \tau}{8 q^2 R} + \frac{A}{4} \cdot \frac{C^2}{q^2} \right)^{\frac{1}{2}} \cdot (12)$$

$$\overline{N}_{III_{12}} = 4,35 \left(\frac{3 \, k \, TR_{III} \, a}{8 \, r} \cdot \frac{C^2}{q^2} + \frac{I_g \, r}{16 \, q} + \frac{k \, T \, r}{8 \, q^2 \, R} + \frac{A}{4} \cdot \frac{C^2}{q^2} \right)^{\frac{1}{2}}, \quad (13)$$

$$\overline{N}_{III}_{22} = 7.7 \left(\frac{k T R_{IIIA}}{16 \tau} \cdot \frac{C^2}{q^2} + \frac{I_R \tau}{32 q^2} + \frac{k T \tau}{16 q^2 R} + \frac{A}{12} \cdot \frac{C^2}{q^2} \right)^{\frac{1}{2}}.$$
 (14)

Здесь первый индекс обозначает число интегрирующих цепей, а второй – дифференцирующих, С и І_в включают в себя параметры внешней входной цепи.

Учитывая только дробовый шум и шум флюктуаций I_g и I_{Π} и принимая отношение сигнала к шуму для случая однократного интегрирования и однократного дифференцирования ' $\gamma_{11} = 1$, легко показать, что для двукратного интегрирования и однократного дифференцирования $\gamma_{21} = 1,14$, для однократного интегрирования и двукратного дифференцирования $\gamma_{12} = 0,94$, для двукратного интегрирования и двукратного дифференцирования $\gamma_{22} = 1$. Отсюда видно, что если нет ограничений на временное разрешение, выгоднее работать в режиме формирования с двумя интегрирующими цепочками и одной дифференцирующей.

Оптимальные значения постоянной времени формирования, при которой приведенный шум минимален (равенство вклада дробового шума и шума от флюктуаций тока I_g и теплового шума входного сопривления U² = U² + U² _{ШR}):

$$r_{\text{ORT}^{-11}} = C \left(\frac{R_{\text{IIIA}}}{20 \, I_{\text{g}} + 1/R} \right)^{\frac{1}{2}},$$
 (15)

$$0^{\Pi T} 21 = 0.58 \tau_{0\Pi T} 11$$
, (15a)

$$r_{\text{OIIT}12} = 1.73 r_{\text{OIIT}11} , \qquad (156)$$

а соответствующие значения минимального шума:

$$\bar{N}_{\text{IIImin}_{11}} = 1.06 \cdot 10^9 \text{ C} \frac{5}{8} R_{\text{IIIA}}^{1/4} (20 I_g + 1/R)^{1/4},$$
 (16)

$$\bar{N}_{\text{IIImin}_{21}} = 0.97 \bar{N}_{\text{IIImin}_{11}}$$
, (16a)

$$\tilde{N}_{111\,min_{12}} = 1.13\,\tilde{N}_{111\,min_{11}}$$
 (166)

На основании выражений (11 – 16) и расчетов, проведенных Цукудой^{/3/}, составлена таблица 1 компонент приведенного входного шума в среднеквадратичных электронах (электронно-дырочных пар) и таблица 2 эначений ширины линии шума (в кэв) для кремниевых детекторов от различных источников шума системы детектор – усилитель. Ширина линии шума для германиевых детекторов на 20% меньше.

 $\overline{N} = \overline{N}_{\text{III} \min 11}$

Пример расчета

Рассчитать уровень шума системы Ge-Li детектор - предусилитель с полевым транзистором на входе при оптимальной постоянной времени формирования. Тип формирования - двукратное интегрирование, однократное дифференцирование на RC 2 цепях.

Параметры детектора: $C_{\mu} = 12 \text{ пф}$, $I_{\mu} = 2.10^{-10} \text{ a.}$ Параметры полевого транзистора: S = 2.2 ма/в, $I_g = 0.5.10^{-10} \text{ a.}$ $C_{gs} + C_{gd} = 2.6+2.4=5 \text{ пф}$, $A = 10^{-15} \text{ кул}^2/\text{ пф}^2$. При $C_0 = 1 \text{ пф и}$ $C_M = 2 \text{ пф}$ C = 20 пф. $I_g + I_{\mu} = 0.25 \text{ на}$, $R_{ma} = 0.6/2.2.10^{-3} = 270 \text{ ом}$.

В соответствии с выражением (15a):

$$\tau_{\text{OIT}_{21}} = 0.58 \cdot 20 \cdot 10^{-12} \sqrt{\frac{270}{20 \cdot 0.25 \cdot 10^{-9} + 10^{-9}}} = 0.85 \text{ MKCeK}$$

Пользуясь таблицей 1, находим:

 $\overline{N}_{III a} = 0,52 \cdot 20 \sqrt{\frac{270}{0,85}} = 184 \ 9 \ ;$ $\overline{N}_{III g} = 126 \cdot \sqrt{2,5 \cdot 0,85} = 184 \ 9 \ ;$ $\overline{N}_{III g} = 890 \sqrt{\frac{0,85}{1000}} = 26 \ 9 \ (R = 1 \ \Gamma_{OM} \) ;$ $\overline{N}_{III g} = 3,7 \cdot 10^{-2} \cdot 20 = 0,74 \ 9 \ .$

· 9

Отсюда полная ширина линии шума системы детектор - усилитель

$$\Delta^{Ge} = 7\sqrt{N} \frac{2}{ma} + \frac{N_{IIIg}^2}{ma} + \frac{N_{IIIg}^2}{N_{IIIg}} + \frac{N_{IIIg}^2}{N_{IIII}} + \frac{N_{III}^2}{N_{IIII}} = 1.8 \text{ k} \Rightarrow B$$

Без детектора ширина линии шума усилителя

$$\overline{N}_{IIIA} = 0.52 \cdot 8 \sqrt{\frac{270}{0.85}} = 74 \Im ;$$

$$\overline{N}_{III_{g}} = 126 \sqrt{0.05 \cdot 0.85} = 26 \Im ; \ \overline{N}_{III_{R}} = 26 \Im$$

 $\Delta^{Ge} = 0.6 \text{ KBB}$

с наклоном

$$\alpha = \frac{\Delta_{a}^{Ge}}{C} = 7 \cdot 0.52 \sqrt{\frac{270}{0.35}} = 0.065 \text{ k} \Rightarrow B/n \phi.$$

Использование графических методов определения оптимальной постоянной времени формирования и основных источников шума системы детектор – усилитель позволяет свести до минимума все расчеты. На основании вышеприведенных расчетных выражений (11-18) и непосредственно табл. 2 были составлены номограммы для графического определения оптимальной постоянной времени формирования, минимальной ширины линии шума и вклада шумов от основных источников шума системы полупроводниковый детектор – усилитель в зависимости от параметров детектора, входной лампы или транзистора для четырех видов RC формирования.

Пример пользования номограммами

Определить оптимальную постоянную времени формирования ⁷ опт 11[°] минимальную ширину линии шума и ширину линии шума от основных источников, если система кремниевый полупроводниковый детектор-ламповый предусилитель имеет следующие параметры:

C = 10
$$\pi\phi$$
;
R = 500 oM;
I g + I = 2,7 Ha;
R = 470 Mrom.

Из номограммы 1 определяем $\tau = 1$ мксек. Из номограммы 2 определяем $\Delta_{g}^{S1} = 2,2$ кэв. Из помограммы 3 определяем $\Delta_{g}^{S1} = 1,5$ кэв, $\Delta_{g}^{S1} = 1,5$ кэв, $\Delta_{g}^{S1} = 1,5$ кэв.

Полная ширина линии шума с учетом R :

$$\Delta^{S1} = \sqrt{1.5^2 + 1.5^2 + 0.3^2} \approx 2,2 \text{ KBB}$$

с наклоном 0,15 кэв/пф.

Литература

1. В.Г. Бровченко, Ю.Д. Молчанов. ПТЭ, № 4, 5(1964).

- А.Б. Джиллеспи, Сигнал, шум и разрешающая способность усилителей. Перевод с англ., Атомиздат, 1964.
- 3. M. Tsucuda. IRE Trans., NS-9, N4, 69, 1962 .

4. H.R. Bilger. Nucl. Instrum., v. 40, N 1, 54, 1966.

5. Van der Ziel A., Proc. IEE, 50, N8, 1808, 1962.

6. T.L. Emmer. IRE Trans., N S-9, N 3, 305, 1962.

7. T.V. Blalocu. IEEE Trans., NS-11, N 3, 365, 1964 .

8. I.L. Blankenship. IEEE Trans, NS-11, N3, 373, 1964 .

9, F.S. Goulding. Semiconductor Detectors for Nuclear Spectrometry, July 30, 1965, UCRL-16231, Berkeley.

10. Б.В. Фефилов, Л. Кумпф. Препринт ОИЯИ, 2110, Дубиа, 1965.

11. Б.В. Фефилов. Кандидатская диссертация, ОИЯИ, Дубна, 1965.

11

Рукопись поступила в издательский отдел 5 января 1967 г.

Таблица1

Ń.

			·····					
1/1	Тип формирования	<i>Nwa</i> ср.кв.электрон	<i>Nug</i> ср.кв.электрон	<i>Кш</i> е ср.кв.әлектрон	<i>Ñшf</i> ср. кв. ол.	P	8/811	Примечание
1	(днократное интегрирование, однократное дифференцирование $B/T_{H} = T_{A} = T$ $G/T_{H} = T; T_{A} = \lambda T$	$0,76a$ $1,07a\sqrt{\frac{\lambda}{\lambda+1}}$	107 Β 1508 √λ (λ+)	760 h 1070 h $\sqrt{\lambda} \left(\frac{\lambda}{\lambda+1}\right)$	38.10 ⁻² C	0,368	1	$A_{f} = 10^{-15} \frac{K_{5} m_{p}^{2}}{m_{p}^{2}}$ $P = \frac{U_{c}}{U_{c}} \frac{K_{c}}{\Delta x}$
2	Двукратное интегрирование, однократное дифференцирование $a/T_{m_1} = T_{m_2} = T_A = T$ $b/T_{m_1} = T_{m_2} = T; T_A = \lambda T$	$0,52 a$ $1,04 a \frac{\lambda}{\lambda+1}$	126 B 1468 \lambda +1 \lambda 2\lambda +1	890 h 1030 h <u>2</u> 22+1	37 10 ² C	0,271	1,14	$\delta_{H} = \frac{U_{c}}{\sqrt{U_{u}^{2} + U_{u}^{2}}}$ $\delta_{AA} = C_{f} \frac{R_{u}a}{\tau}$
3.	Однокр.инг., двукратное дифференц. а/ $T_H = T_{\mathcal{A}_1} = T_{\mathcal{A}_2} = T$ 6/ $T_H = T$; $T_{\mathcal{A}_1} = T_{\mathcal{A}_2} = \lambda T$	$\frac{1,05 a}{1,2a \frac{\lambda}{\lambda+1} \sqrt{\frac{2\lambda+1}{\lambda}}}$	$86 b$ $172 b \frac{\lambda}{\lambda+1} \sqrt{\lambda}$	610 h 1220 h à 1270 h	43 10°C	0,228	0,94	$b = \sqrt{I_g \tau}$ $h = \sqrt{\frac{\tau}{R}}$
4.	Двукр.инт., двукр.диференцирование Ти, = Ти, = Та, = Та, = Т	0,76 a	107 B	760 h	44.10 ⁻² C	0, 130	1	R _{en} (ar)
5.	Трехкратное инт., однокр. дифференц. $T_{u_1} = T_{u_2} = T_{A_3} = T_A = T$	0,44 a	137 B	970 h	36 10 2C	0,224	1,27	Iz (4a) C (19)
6.	Однокр. инт., однокр. диф. на ЛЗ $a/T_{H} = T_{A3} = T$ [10] $b/T_{H} = T; 2T_{A3} = 16T$ [10] $a/T_{H} = T; 2T_{A3} = \lambda T$ [4]	0.7 a 0.9 a 0.76 a $\sqrt{1-e^{\lambda}}$	76 β 89 β 107β (λ-(1-e ^{-h}))	540 h 630 h 760h Лл-(1-ē ^{*)}	32.10 ² C 39.10 ² C	0,628 0,981	1,21 0,98	R (мгом) Т (мксен)
7.	Однокр. инт., двукр. диф. на ЛЗ а/Ти=Т; 2Тлз,=2Тлз_=16°С [10] 6/Ти=Т; 2Тлз,=2Тлз_=27С [4]	1,55 a Q38 a√(3-ē ³)(1-e ⁻³)	115 B 54 [22-(3-e*)[1-e*]	815 h 384h √[22-(3-ē^)](t-ē)	63 10 ² C	0,981	0,61	

រេ

Таблица 2

Пир	Τ	Ширина линии шума (кэв для Si)				Без угета ∆ _R u∆j	Безучета R	
Формирования (пост времени Т)		Дробовый шум △а	Шум Сеточного тока и утечки Дд	Шун вхадного гопротивл Др	Фликкер- шум Дз	∆ мин (кэв)	Топт. (мксек)	Примеч.
Идникратное интегрирование, однократное дисреренцирование	-11	6,4.10 ³ C√Rus	0,92√IgT	6,4√ <u>7</u> R	3,2·10 ⁻² C	0,11√C ∜RwaIg	$7.10^{-3}C\sqrt{\frac{R_{uuc}}{I_g}}$	T=293°к С(пф)
Двукратное интегрирование, однократное дитереренизирование	21	4,4.10 Cy Rug T	1,07 (IgT	$7.6\sqrt{\frac{T}{R}}$	3,1 10 ⁻² C	0,10 VC 4 Rua Ig	$4.10^{3} C \sqrt{\frac{R_{un}}{Ig}}$	Rша (ом) R (мгом) Ig (На)
Однакратнае интегрирование, двукрастное дифференцирсвание	-12	8,9.10 ³ C/ Ru o	0,73√IgT	$5,2\sqrt{\frac{7}{R}}$	3,6 IŪ Ĉ	0,12 \C \Rug Ig	12.10 ³ (Rua 1 ₉	Т{мксек
Двукратное интеграробание, двукратное дицереренцирование	-22	6,4 <i>1</i> 0 ³ C√ Ru a	0,92√Iz7	$64\sqrt{\frac{T}{R}}$	3,7 <i>10⁻²C</i>	Q11√C ∜Rwa·Ig	$7 I \overline{OC} \sqrt{\frac{R_{wo}}{I_g}}$	
	1	$I_g = I_g^+ + I_g^-$	+Iy,	△si = 8,5 V	Nw;	$\Delta_{Ge} = 0.8 \Delta_{Si}$	8	· · ·

-

Рис. 2. Номограмма 1. Определение оптимальной постоянной времени формирования.

Рис. 3. Номограмма 2. Определение минимальной ширины линии шума системы детектор - усилитель.

17

1₂₁ шума (формирование 711 И

्**म** २