4932/4-79



## ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

A-877

P13 - 12466

В.А.Архипов, М.М.Комочков, С.В.Куликов, А.Стпичински

# ФИЗИЧЕСКИЙ ПУСК РЕАКТОРА ИБР-2. ИЗМЕРЕНИЕ СПЕКТРА НЕЙТРОНОВ УТЕЧКИ

Дубна 1979

### P13 - 12466

.

## В.А.Архипов, М.М.Комочков, С.В.Куликов, А.Стпичински

# ФИЗИЧЕСКИЙ ПУСК РЕАКТОРА ИБР-2. ИЗМЕРЕНИЕ СПЕКТРА НЕЙТРОНОВ УТЕЧКИ

BEPHE

Архипов В.А. и др.

Arkhipov V.A. et al.

P13 - 12466

Физический пуск реактора ИБР-2. Измерение спектра нейтронов утечки

Представлены результаты измерения спектра нейтронов утечки реактора ИБР-2. Измерения проводились на поверхности замедлителя /5 см H<sub>2</sub>O / набором активационных детекторов и на расстоянии 8 м от замедлителя с помощью спектрометра Боннера. Приводится сравнение экспериментальных результатов с расчетными. Установлено, что плотность потока тепловых нейтронов с энергией E<E cd на поверхности замедлителя составляет 3·10<sup>6</sup> нейтр./см<sup>2</sup> с на 1 Вт мощности реактора. На основе измеренного спектра вычислены мощность поглощенной и эквивалентной доз нейтронов. На расстоянии 8 м от замедлителя мощность эквивалентной дозы нейтронов равна 50 мбэр/ч Вт.

Работа выполнена в Отделе радиационной безопасности и радиационных исследований ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1979

P13 - 12466

IBR-2 Reactor Physical Start-Up. The Results of Measuring the IBR-2 Leakage Neutron Spectrum

The results of measuring the IBR-2 leakage neutron spectrum are presented. The measurements of spectrum were carried out on the surface of the moderator (5 cm  $\rm H_2O$ ) by means of activation detectors and 8 m far from moderator using a Bonner spectrometer. Comparison of experimental results with calculation data is given. It is found that on the surface of moderator the flux density of thermal neutrons with  $\rm E < E_{cd}$  equals 3.10  $^6$  n/cm sec Wt. From the measured neutron spectrum the absorbed and equivalent dose rates were calculated. 8 m far from moderator the equivalent dose rate equals 50 mrem/hour Wt.

The investigation has been performed at the Department of Radiation Safety, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1979

#### ВВЕДЕНИЕ

Реактор ИБР-2<sup>/1,2/</sup> располагается в центральной части биологической защиты, выполненной в виде двух концентрических бетонных колец / рис. 1/. Через биологическую защиту проходят 14 горизонтальных и 3 наклонных канала для вывода нейтронных пучков. Для оценки радиационной опасности, которую представляют собой нейтронные пучки реактора, а также для проектировки защиты от наведенной в экспериментальных устройствах активности, необходимо знание энергетического спектра нейтронов. Кроме того, знание спектра необходимо при физических и медико-биологических исследованиях, в случае радиационной аварни, а также для проверки расчетов по выходу из реактора нейтронов различных энергий. С этой целью в период физического пуска ИБР-2 без теплоносителя проводилось измерение энергетического спектра нейтронов в пучке №2. Спектр измерялся на поверхности замедлителя /точка А на рис. 1/ и за внешним кольцом бнологической защиты /точка Б на рис. 1/.

Спектр нейтронов пучка №2 формируется следующим образом: нейтроны деления из активной зоны проходят через двухстенный стальной корпус реактора, вольфрамовый отражатель в стальной оболочке и попадают в водяной замедлитель толщиной 50 мм. К прошедшим замедлитель нейтронам добавляются нейтроны, рассеянные стенками канала, который формирует пучок.

#### 1. ИЗМЕРЕНИЕ СПЕКТРА НЕЙТРОНОВ НА ПОВЕРХНОСТИ ЗАМЕДЛИТЕЛЯ

Измерення проводились в импульсном режиме работы реактора ИБР-2 на мощности ~ 300 Вл с помощью набора активационных детекторов / *табл. 1*/. Измерялись плотность потока тепловых нейтронов и спектр утечки промежуточных и быстрых нейтронов. Для регистрации нейтронов были использованы следующие реакции:

<sup>63</sup> Cu (n,  $\gamma$ )<sup>64</sup> Cu, <sup>197</sup> Au (n,  $\gamma$ )<sup>198</sup> Au - детекторы тепловых нейтронов; <sup>115</sup> In (n,  $\gamma$ )<sup>116</sup> In, <sup>197</sup> Au (n,  $\gamma$ ) <sup>198</sup> Au, <sup>139</sup> La (n,  $\gamma$ )<sup>140</sup> La, <sup>55</sup> Mn (n,  $\gamma$ )<sup>56</sup> Mn, <sup>63</sup> Cu (n,  $\gamma$ )<sup>64</sup> Cu, <sup>23</sup> Na (n,  $\gamma$ )<sup>24</sup> Na, <sup>164</sup> Dy (n,  $\gamma$ )<sup>165</sup> Dy - детекторы промежуточных нейтронов; <sup>103</sup> Rh (n, n')<sup>103</sup> Rh, <sup>115</sup> In (n, n')<sup>115</sup> In, <sup>31</sup> P (n, p)<sup>31</sup> Si, <sup>32</sup> S (n, p)<sup>32</sup> P, <sup>56</sup> Fe (n, p)<sup>56</sup> Mn, <sup>27</sup> Al (n,  $\alpha$ )<sup>24</sup> Na - детекторы быстрых нейтронов.



Рис. 1. Биологическая защита реактора ИБР-2.

#### Таблица 1

#### Детекторы нейтронов

| Детектор | Материал и состав детектора                                                     | Bec, r |
|----------|---------------------------------------------------------------------------------|--------|
| 1        | 2                                                                               | 3      |
| Cu       | 1. Фольга /ГОСТ 5638-51/,<br>толщина 0.1                                        | 0,2106 |
|          | 2                                                                               | 0,2135 |
| Au       | 1. Фольга                                                                       | 0,0213 |
|          | 2!!_!!_!!_!!                                                                    | 0,0172 |
| In       | 1. Металл /00/                                                                  | 0,7400 |
|          | 2. Окись индия /0,05%/,<br>бензойная киспота                                    | 0,3208 |
|          | <ol> <li>3. Окись индия /0,0593%/,<br/>бензойная кислота</li> </ol>             | 0,6200 |
|          | 40-0-0-0-0-0-0-0-                                                               | 0,5760 |
|          | 5!!_!!_!!_!!_!!_!!_!!_!!_                                                       | 0,6178 |
| La       | 1. Окись лантана /1,363%/,<br>бензойная кислота                                 | 0,3892 |
|          | 2                                                                               | 0,3756 |
| Mn       | 1. Углекислый марганец /1,3%/,<br>бензойная кислота                             | 0,2584 |
|          | <ol> <li>Углекислый марганец /1,57%/,<br/>бензойная кислота</li> </ol>          | 0,4690 |
| Na       | 1. Азотнокислый натрий                                                          | 1,1336 |
| Dy       | <ol> <li>Цавелевокислый диспрозий</li> <li>/2.2%/. бензойная кислота</li> </ol> | 0,3356 |
|          | <ol> <li>Углекислый диспрозий /2,764%/,<br/>бензойная кислота</li> </ol>        | 0,8300 |
| Rh       | Фольга                                                                          | 0,0600 |
| Р        | 1. Фосфорнокислый однозамещенный                                                | 0,7160 |
|          | аммонии<br>2                                                                    | 0,9090 |

4

Продолжение табл. 1

| 1  | 2                                           | 3      |
|----|---------------------------------------------|--------|
| S  | 1. Сера /80%/, поливиниловый<br>спирт /20%/ | 0,5282 |
| -  | 2                                           | 0,6346 |
|    | 3                                           | 0,5668 |
| Fe | Металл /карбонильное                        |        |
|    | железо А-2/                                 | 2,5620 |
| Al | Металл /А-999,                              |        |
|    | FOCT 11069-64/                              | 1,5130 |

Медные детекторы из зонного активационного спектрометрического аварийного дозиметра ЗАСАДА<sup>/3/</sup>и золотые детекторы облучались как в кадмиевом чехле толщиной 1 мм, так и без кадмия. Родий, из аварийного дозиметра ГНЕЙС<sup>/4/</sup> облучался в борном фильтре. Все остальные детекторы облучались в кадмиевом чехле толщиной 1 мм.

Расположение детекторов на поверхности замедлителя во время облучения показано на *рис. 2.* Длительность облучения составляла 1 ч.



Рис. 2. Расположение детекторов на поверхности замедлителя во время облучения.

Активность родневого детектора измерялась с помощью одноканального спектрометра мягкого гамма-излучения с кристаллом NaI(T1) размером 20х1 мм. Спектрометр регистрировал гамма-кванты с энергией 20 кэВ, испускаемые изомером Rh – 103 m. Активность серных, фосфорных и медных детекторов измерялась с помощью торцового бета-счетчика СБТ-13<sup>/6/</sup>.

Градунровочные коэффициенты, связывающие скорость счета N с активностью A этих детекторов, были получены облучением нейтронами с энергией 14 *МэВ*. Активность остальных детекторов определялась с помощью гамма-спектрометра с кристаллом NaI(T1) размером 63х63 мм с выводом информации на 128-канальный анализатор импульсов. Эффективность регистрации  $\epsilon(E)$ гамма-квантов с энергией E определялась экспериментально с помощью набора образцовых гамма-излучателей графическим способом <sup>/5/</sup>. Активность детекторов определялась по формуле:

$$A = \frac{s \cdot k}{(\Delta t - t_M)\epsilon(E)}, \qquad /1/$$

где s- число импульсов в пике полного поглощения гамма-квантов с энергией E ;  $\Delta t$  - время измерения;  $t_M$  - суммарное мертвое время анализатора; k - поправка на самопоглощение в детекторе, определяемая приближенно из соотношения:

$$k = \frac{\mu d}{1 - e^{-\mu d}}, \qquad /2/$$

где µ - коэффициент ослабления гамма-квантов; d - толщина детектора.

С целью уточнения активности детектора из золота проводилось дополнительное измерение на установке бета- гаммасовпадений. Влияние побочных реакций при всех измерениях исключалось путем анализа кривых спада активности. На основе измеренных активностей детекторов рассчитывались активационные интегралы:

$$R = \int_{E_{min}}^{\infty} \sigma(E)\phi(E) dE = \frac{A e^{\Lambda t_p}}{n(1 - e^{-\lambda t_0})}, \qquad /3/$$

где  $\sigma(E)$  - сечение реакции;  $\phi(E)$  - спектр нейтронов; А - активность детектора в момент измерения; п - число ядер в детекторе;

6

λ - постоянная распада; t<sub>0</sub> - время облучення; t<sub>p</sub> - время, прошедшее от конца облучения до начала измерения.

Нижний предел интегрирования в формуле /3/ определяется условнями облучения: для детекторов, которые облучались в кадмиевом чехле,  $E_{\min}$  равняется граничной энергии кадмия  $E_{cd}$ ,  $E_{\min} = E_{cd} \approx 0.6$  *эВ*; для детекторов, облученных без кадмия,  $E_{\min} = 0.$ 

Значения активационных интегралов, рассчитанные по формуле /3/, приведены в *табл. 2*.

#### Таблица 2

Активационные интегралы, с -1

| Реакция                                          | Детектор | Активационный<br>интеграл |
|--------------------------------------------------|----------|---------------------------|
| $^{197}$ Au(n,y) $^{198}$ Au                     | Au-1     | 1.5.10-13                 |
|                                                  | Au-2     | $2.5.10^{-13}$            |
| $^{63}$ Cu (n, $\gamma$ ) <sup>64</sup> Cu       | Cu-1     | $7.2.10^{-16}$            |
|                                                  | Cu-2     | 4.7.10-15                 |
| $115 \ln(n, \gamma)^{116}$ m In                  | In - 2   | $3.8 \cdot 10^{-13}$      |
|                                                  | In - 3   | 3,8.10-13                 |
|                                                  | In-4     | 4,2.10-13                 |
| 20 140                                           | In - 5   | 3,6.10-13                 |
| <sup>39</sup> La(n, $\gamma$ ) <sup>140</sup> La | La-1     | 2,8.10-15                 |
| FF 50                                            | La-2     | 2,7.10-15                 |
| $^{55}$ Mn(n, $\gamma$ ) $^{56}$ Mn              | Mn - 1   | 2,2.10                    |
| 20                                               | Mn -2    | 2,3.10-15                 |
| $^{23}$ Na(n, $\gamma$ ) <sup>24</sup> Na        | Na -1    | 3,7.10-17                 |
| $Dy(n,\gamma)Dy$                                 | Dy-2     | 6,0.10-14                 |
| <sup>103</sup> Rh(n,n') <sup>103 m</sup> Rh      | Rh-2     | 4,1.10-16                 |
| $15 \ln(n,n') 115 m \ln$ .                       | In – 1   | 8,5.10-17                 |
| ${}^{31}P(n,p){}^{31}Si$                         | P-1      | $1.6 \cdot 10^{-17}$      |
|                                                  | P-2      | 1,6.10-17                 |
| ${}^{32}S(n,p){}^{32}P$                          | S - 1    | $2.3 \cdot 10^{-17}$      |
|                                                  | S-2      | 2,2.10-17                 |
| $56 \mathrm{Fe}(n,p)^{56}\mathrm{Mn}$            | Fe-1     | 3,8.10 -19                |
| $^{27}$ Al(n,a) <sup>24</sup> Na                 | A1-2     | $2,9.10^{-19}$            |
|                                                  |          |                           |

#### 1

#### 1.1. Измерение плотности потока тепловых нейтронов

Плотность потока тепловых нейтронов на поверхности замедлителя определялась методом кадмиевой разности по активности медных и золотых детекторов. Расчет плотности потока тепловых нейтронов проводился, согласно <sup>/7</sup>/ по формуле:

$$\Phi = \frac{R_0}{c_0 g G_T} \left(1 - \frac{F_{cd}}{r_{cd}}\right), \qquad (4/$$

где  $R_0$  - активационный интеграл для открытого образца;  $\sigma_0$  - сечение активации нейтронами с энергией O,O25 *эВ*; g - параметр Вескотта, учитывающий отклонение сечения реакции от закона 1/v;  $G_T$ - коэффициент самоэкранировки образца;  $F_{cd}$ поправка на поглощение надтепловых нейтронов в кадмии;  $r_{cd}$ кадмиевое отношение,  $r_{cd} = R_0/R_{cd}$ ;  $R_{cd}$  - активационный интеграл для образца, экранированного кадмием.

Среднее значение плотности потока тепловых нейтронов на поверхности замедлителя, полученное с помощью медных и золотых детекторов, оказалось равным /3,0±0,2/·10<sup>6</sup> нейтр./см<sup>2</sup> с Вт, что примерно в 2 раза превышает расчетную величину <sup>/8/</sup>.

#### 1.2. Восстановление спектра надтепловых нейтронов

Дифференциальный спектр надтепловых нейтронов рассчитывался по результатам измерения активности резонансных детекторов методом вычитания вклада 1/v -части сечения<sup>/7/</sup>. В качестве детектора с сечением, подчиняющимся закону 1/v, использовался диспрозий. Расчет дифференциального спектра проводился при следующих предпосылках.

1. Энергетическая зависимость сечения реакции активации резонансного детектора представляется в виде:

$$\sigma(\mathbf{E}) = \sigma^{1/\mathbf{v}}(\mathbf{E}) + \sum_{\ell} \sigma^{r(\ell)}(\mathbf{E}), \qquad (5/2)$$

где  $\sigma^{1/v} \sim 1/v$ ,  $\sigma^{r(\ell)}$  - вклад в сечение реакции, обусловленный  $\ell$  -м резонансом.

2. Энергетическая зависимость  $\sigma^{r(\ell)}(E)$  описывается формулой Брейта-Вигнера для изолированиого резонанса.

При облучении детектора в кадмии активационный интеграл  $R_{cd}$  связан с дифференциальным спектром нейтронов  $\phi(E)$  следующим соотношением:

$$R_{cd} = \int_{E_{cd}}^{\infty} \sigma(E)\phi(E) dE = R^{1/v} + R^{r} , \qquad /6/$$

где  $E_{cd}$  - энергия кадмневой границы;  $R^{1/\nu}$ н  $R^r$  - составляющие активационного интеграла, обусловленные  $1/\nu$  -частью сечения и всеми резонансами соответственно. Использование диспрозия в качестве  $1/\nu$  -детектора совместно с резонансными детекторами позволяет выделить резонансную часть активационного интеграла, которая связана с дифференциальной плотностью потока нейтронов  $\phi(E_0)$  при энергин основного резонанса  $E_0$ соотношением:

$$b(\mathbf{E}_0) = \frac{2}{\pi} \frac{1}{\Gamma_v \sigma_0^c} \left( \mathbf{R}_{cd} - \mathbf{F}_1 \mathbf{R}_{cd}^{Dy} \right) \mathbf{F}_2 , \qquad (7/2)$$

где  $\Gamma_{\gamma}$  - раднационная ширина основного резонанса;  $\sigma_0^c$  - сечение образования составного ядра при энергии нейтронов  $E_0$ . Поправочные коэффициенты  $F_1$  и  $F_2$ , а также значения  $\Gamma_{\gamma}$  и  $\sigma_0^c$ взяты из работ <sup>/5,7/</sup>. Результат восстановления спектра представлен на *рис.* 3. Погрешность восстановления 30-40%.

#### 1.3. Восстановление спектра утечки быстрых нейтронов с поверхности замедлителя

Спектр утечки быстрых нейтронов с поверхности замедлителя восстанавливался по результатам измерений активности пороговых детекторов. Было использовано два метода восстановления спектра: метод статистической регуляризации и "экспрессный" метод.

Восстановление спектра методом статистической регуляризации проводилось по программе BONNER<sup>99</sup>, предназначенной для решения системы уравнений вида:

$$\int \sigma_{i}(E) \phi(E) dE = R_{i} + \epsilon_{i}, \quad i = 1, 2, ..., m,$$
 /8/



Рис. 3. Дифференциальные спектры нейтронов в пучке №2 /нейтр./см<sup>2</sup> с МэВ Вт/, Е - энергия нейтронов /МзВ/, 1расчетный спектр на поверхности замедлителя <sup>/8/</sup>, 2 - спектр нейтронов в пучке /8 м от замедлителя/, ▲ - резонансные детекторы; • - пороговые детекторы, восстановление спектра методом статистической регуляризации; • - пороговые детекторы, восстановление "экспрессным" методом; ш - спектрометр Боннера.

здесь m - количество используемых реакций активации;  $\sigma_i(E)$  энергетическая зависимость сечения i -реакции;  $R_i$  - активационный интеграл;  $\epsilon_i$  - погрешность измерения активационного интеграла.

"Экспрессный" метод восстановлення спектра нейтронов 10/ основан на экспоненциальной аппроксимации спектра на отдельных энергетических интервалах. Так как количество используемых пороговых детекторов невелико /всего 6/, было выбрано

10

такое разбненне рассматриваемого диапазона энергий, при котором границы интервалов совпадают с эффективными порогами реакций / табл. 3/:

O,7÷1,2 M∍B 1,2÷2,3 M∍B 2,3÷3,O M∍B 3,O÷6,4 M∍B > 6,4 M∍B.

Результат восстановления спектра утечки нейтронов с поверхности замедлителя представлен на *рис. З.* Погрешность восстановления спектра "экспрессным" методом не превышает ЗО% /расчет ошибок проводился в соответствии с методикой, изложенной в <sup>/7/</sup> /.

#### Таблица 3

Интегральная плотность потока быстрых нейтронов  $\Phi_{E \ni \varphi \varphi}$ с энергией больше  $E_{\ni \varphi \varphi}$  на поверхности замедлителя при мощности реактора ЗОО *В* 

| Реакция активации                                | Эффективный порог<br>Е∋фф, МэВ | Интегральная<br>плотность потока<br>Ф <sub>ЕЭфф</sub><br>нейтр./см <sup>2</sup> . с |
|--------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------|
| <sup>103</sup> Rh (n, n') <sup>103</sup> mRh     | 0,7                            | 4,4.108                                                                             |
| $115 \ln(n, n')^{115m} \ln(n, n')$               | 1,2                            | 3,0 .10 <sup>8</sup>                                                                |
| ${}^{31}P(n,p) {}^{31}Si$                        | 2,3                            | 1,6.10 <sup>8</sup>                                                                 |
| $32^{32} S(n,p)^{32} P$                          | 3,0                            | 7,9.107                                                                             |
| $^{56}$ Fe(n,p) $^{56}$ Mn                       | 6,4                            | 6,9·10 <sup>6</sup>                                                                 |
| <sup>27</sup> Al (n, $\alpha$ ) <sup>24</sup> Na | 7,4                            | 3,5.10 <sup>6</sup>                                                                 |

#### 2. ИЗМЕРЕНИЕ СПЕКТРА НЕЙТРОНОВ В ПУЧКЕ №2 ЗА ВНЕШНИМ КОЛЬЦОМ БИОЛОГИЧЕСКОЙ ЗАЩИТЫ

Спектр нейтронов за вторым кольцом бнологической защиты /точка Б нарис.1/ измерялся спектрометром Боинера и борным счетчиком СНМ-14<sup>'6'</sup>в кадмии и без него. В спектрометре Боннера использовались полиэтиленовые шаровые замедлители диаметром 5,08; 7,62; 12,4; 25,4 и 30,48 см, в центре которых устанавливался детектор тепловых нейтронов - кристалл LiI(Eu).

Измерения проводились в стационарном режиме работы реактора при мощности ~ 60 Вт. Обработка результатов измерений осуществлялась методом статистической регуляризации по программе BONNER, в которую для уточнения спектра на верхней границе энергетического диапазона вводилась дополнительная информация в виде сечений и активационных интегралов пороговых детекторов из железа и алюминия, облученных на поверхности замедлителя. Значения активационных интегралов пересчитывались с учетом мощности реактора и расстояния 8 м от поверхности замедлителя до точки Б, в которой измерялся спектр нейтронов. С помощью родневого детектора установлено, что на расстоянии 8 м от поверхности замедлителя плотность потока быстрых нейтронов ослабляется в 2,4-10<sup>8</sup> раз.

Дифференциальный спектр нейтронов в точке Б за биологической защитой, восстановленный по программе BONNER, представлен на *рис. 3* /кривая 2/.

#### 3. МОЩНОСТЬ ДОЗЫ В ПУЧКЕ ИБР-2

Программа BONNER наряду с восстановлением дифференциального спектра нейтронов производит вычисление различных функционалов и, в частности, вычисление мощности поглощенной и эквивалентной доз. В табл. 4 представлены результаты вычисления вышеуказанных мощностей доз на поверхности водяного замедлителя и за биологической защитой в пучке №2, приведенные к мощности реактора 1 Вт. Там же представлено значение мощности кермы на поверхности замедлителя и на расстояниях 4 и 8 м от него, вычисленное по активности родиевого детектора из дозиметра ГНЕЙС с использованием дозовой чувствительности, взятой из работы /12/.

| 1    | þ |  |
|------|---|--|
| ç    | 3 |  |
| 2020 | 1 |  |
|      | 5 |  |
| 2    | 2 |  |
|      | 4 |  |

# Мощности доз в пучке №2

| Мощность поглощенной дозы, Мошность эквивалентной Мощность | ентной Мощность<br>кермы<br>рад/ч.Вт | E>0,63M3B E>0,45 M3B   | 1,6.10 <sup>2</sup> 1,7.10 <sup>1</sup> | - 2,8.10 <sup>-8</sup>              | 3,6-10 <sup>-8</sup> 7,0-10 <sup>-8</sup> |
|------------------------------------------------------------|--------------------------------------|------------------------|-----------------------------------------|-------------------------------------|-------------------------------------------|
|                                                            | Мощность эквивале<br>дозы, бэр/ч.Вт  | E>0,1 MaB              | 2,1-10 <sup>2</sup>                     | I                                   | 4,3.10 <sup>-2</sup>                      |
|                                                            |                                      | E>10 <sup>-8</sup> M3B | 1                                       | 1                                   | 4,6.10-2                                  |
|                                                            | й дозы,                              | E>0,63 M3B             | 1,6.10 <sup>1</sup>                     | 1                                   | 4,0.10 <sup>-3</sup>                      |
|                                                            | поглощенно<br>ч . Вт                 | E>0,1 M3B              | 2,2.101                                 | 1                                   | 5,0.10-3                                  |
|                                                            | Мощность r<br>рад/ч                  | $E > 10^{-8} M \Im B$  | T                                       | 1                                   | 6,0.10-3                                  |
|                                                            | Место измерения                      |                        | Поверхность<br>замедлителя              | 4 м от поверхно-<br>сти замедлителя | 8 м от поверхно-<br>сти замедлителя       |

#### выводы

1. Измерена плотность потока тепловых нейтронов (E < E <sub>cd</sub>) на поверхности водяного замедлителя в предположении их полной термализации. В расчете на 1 Вт мощности реактора она равна /3,0±0,2/\*10<sup>6</sup> нейтр./см<sup>2</sup>с

2. Измерен спектр нейтронов на поверхности водяного замедлителя. В области промежуточных энергий нейтронов наблюдается хорошее согласие с расчетным спектром. В области E>O,1 МэВ расчетный спектр превышает измеренный в 3 раза.

3. Измерен спектр нейтронов в пучке реактора за внешним кольцом бнологической защиты /на расстоянин 8 м от замедлителя/. Плотность потока быстрых нейтронов уменьшается в 2,4·10<sup>3</sup> раз по сравнению со значением на поверхности замедлителя.

4. На основании измеренных спектров нейтронов рассчитывались мощности поглощенной и эквивалентной доз нейтронов. За биологической защитой реактора мощность эквивалентной дозы в нейтронном пучке составляет ~50 мбэр/ч Вт.

#### ЛИТЕРАТУРА

- 1. Ананьев В.Д. и др. ОИЯИ, 13-4395, Дубна, 1969.
- 2. Шабалин Е.П. Импульсные реакторы на быстрых нейтронах. Атомиздат, М., 1976.
- Князев В.А. и др. Зонный активационный дозиметр. In: Neutron monitoring for radiation protection purposes. v.II, IAEA, Vienna, 1973, p.321-332.
- 4. Бочвар И.А. и др. Метод дозиметрии ИКС. Атомиздат, М., 1977.
- 5. Крамер-Агеев Е.А., Трошин В.С., Тихонов Е.Г. Активационные методы спектрометрии нейтронов. Атомиздат, М., 1976.
- 6. Горн Л.С., Хазанов Б.И. Избирательные радиометры. Атомиздат, М., 1975.
- 7. Метрология нейтронных измерений на ядерно-физических установках. Материалы I Всесоюзной школы, Рига, 22 ноября - 3 декабря, 1976, т.1,2, М., 1976.

14

В. Рогов А.Д., Шабалин Е.П. ОИЯИ, Р13-9990, Дубна, 1976.
 9. Алейников В.Е. и др. ОИЯИ, Р16-9621, Дубна, 1976.
 10. Трошин В.С., Крамер-Агеев Е.А. АЭ, 1970, 29, с.37.
 11. Голиков В.В. и др. ОИЯИ, 3-5736, Дубна, 1971.
 12. Обатуров Г.М., Чумбаров Ю.К. АЭ, 1971, 30, с.387.

Рукопись поступила в издательский отдел 17 мая 1979 года.