ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

13 - 11703

А.В.Карпухин, А.А.Попов, В.С.Хабаров

4745/2-78

БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ ТОЧНОГО КЛЮЧА В СХЕМЕ ЦИФРОАНАЛОГОВОГО ПРЕОБРАЗОВАТЕЛЯ

13 - 11703

А.В.Карпухин, А.А.Попов, В.С.Хабаров

БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ ТОЧНОГО КЛЮЧА В СХЕМЕ ЦИФРОАНАЛОГОВОГО ПРЕОБРАЗОВАТЕЛЯ

Направлено в ПТЭ

062	Tur Pattyr
SACHIER N	Devalution
6KE)	MOTEHA

Карпухин А.В., Полов А.А., Хабаров В.С.

13 - 11703

Билолярные транзисторы точного ключа в схеме цифроаналогового преобразователя

В работе представлены результаты исследований остаточных параметров замкнутых ключей напряжения на биполярных транзисторах, обладающих относительно высоким быстродействием при малых остаточных сопротивлениях. Для двухпозиционного ключа выбраны транзисторы КТ-342В и КТ-351 по схеме с общим коллектором в нормальном включении. В выбранных режимах погрешность преобразования напряжения не превышает ±0,7 мВ. Приведенные в работе характеристики и упрошенная методика позволяют выбрать необходимые типы транзисторов и режимы их работы, обеспечив заданную точность преобразования.

Работа выполнена в Отделе новых методов ускорения ОИЯИ.

Препринт Объединенного института ядерных исследования. Дубна 1978

🕑 1978 Объедяненный внстятут ядерных всследований Дубна

В схемах цифроаналоговых преобразователей (ЦАП) с суммированием напряжения используются двухпозиционные точные ключи на активных элементах. Эти ключи при соответствующих погрешностях изготовления резистивной матрицы, стабилизации источника эталонного напряжения (Е_{эт})и малом выходном сопротивлении вносят основной вклад в общую погрешность преобразования при точности ≈0.1% в динамическом диапазоне ≈5 В. При этом данная погрешность определяется в основном параметрами замкнутого ключа, который в двухпозиционном ключе напряжения шунтирует разомкнутый. Особенности полевых транзисторов в ключевом режиме при работе на относительно низкоомную нагрузку и точных ключей на диодах не позволили применить их в преобразователе рассматриваемого типа и класса точности. Для получения относительно высокого быстродействия при малых переходных сопротивлениях ключа наилучшим образом подходят биполярные транзисторы.

Остаточные параметры транзистора в режиме насыщения (замкнутый ключ), времена установления напряжений с заданной точностью, их стабильности зависят от типа транзисторов, схемы их включения и режимов работы. Исследованию подобных характеристик транзисторов посвяшен ряд работ /1-4/, однако в них рассмотрены не все типы современных транзисторов, схемы включения, не указаны режимы работы. В данной работе представлены результаты исследований остаточных характеристик современных отечественных транзисторов, их основных схем включения: с общим эмиттером (ОЭ), с общим

3

коллектором (ОК), в нормальном и инверсном включениях. Для исследования остаточных характеристик предварительно отобранных транзисторов /2/ применялся непосредственный метод измерения по постоянному току.

На рис.1а представлены схемы включения, а также зависимости напряжения на коллекторе (U_{K3}) от тока базы (при токе нагрузки 0,6 мА для нормального включения транзистора с ОЭ). Минимальные значения U_{K3} для исследованных транзисторов приведены в таблице. Как видно из этой таблицы, минимальными значениями U_{K3} в данном режиме из современных транзисторов обладают KT-342B (6,97 мВ), KT-351Б (3,90 мВ), KT-352 (5,4 мВ).

На рис.16 приведены схема инверсного включения транзистора в ключе с ОЭ и зависимости U $_{K3} = f(I_6)$ при токе нагрузки $I_H = 0,35$ мА. Данная схема включения обладает меньшими значениями величин U $_{K3}$ (см.таблицу), однако малые допустимые напряжения обратно смещенного эмиттерного перехода налагают существенные ограничения на величину коммутируемого напряжения E_{3T} .

Схема нормального включения транзистора в ключе с ОК и зависимости напряжения U_{K9} от тока базы (при $I_{\rm H} = 0,6$ мА) представлены на рис.2а. Характерной особенностью данного включения является то, что напряжение U_{K9} меняет полярность, пересекая нулевое значение. Этот факт определяется тем, что падение напряжения, создаваемого током базы на соответствующих объемных сопротивлениях транзистора, компенсирует разность напряжений на переходах $U_{96} - U_{6K}$. Критерии выбора транзисторов в таком включения могут быть следующими:

1. Наименьшее сопротивление транзистора в режиме насыщения.

2. Наименьший наклон характеристик $U_{K3} = f(I_{\vec{0}})$ при $U_{K3} = 0$ (чтобы погрешность ключей из-за разбросов токов управления была наименьшей: $\Delta I_{\vec{0}} / I_{\vec{0}} \approx 10\%$).

3. Наименьшее значение І_{б ном} (U_{кэ} =0),что смягчает требования к источнику управляющего напряжения.

Параметры исследуемой схемы включения представлены в таблице.Наиболее приемлемыми для схемы точного

Рис. 1. Зависимость остаточных напряжений U_{КЭ} замкнутого транзисторного ключа с общим эмиттером (ОЭ): а) схема нормального включения, б) схема инверсного включения.

4

5

g
Ħ
И
5
ю
g
F

тип транцистора МТ-												
1944	3428	KT- 3428	KT-3516	KT - 352A	KT- 345B	NT- 347A	MT- 3266	MI- 3155	NT- 316 8	KT - 345A	n-29	<i>1</i> Е - ИН
(m)			н - ЄО	орнал	PHOE	рилюц) anha	Iн = 0,6	MA)			
	10'	6,97	3,90	5,4	12,57	20,56	32,43	40,80	26,30	6,94	4, 18	14,00
IS HON 1	60	C,83	1,20	1,60	1,67	1,53	0, 15	2'0	0,85	2,41	2,50	5,0
			1n - EO	16 ерсн	oe Bi	нароним	ue ([н = 0,3	5 MA)			
LLK3 min 81 10	.44	1, 12	1,80	3,60	2, 36	5,94	26,40	25,4	5.81	3,13	4,40	3,40
IS HON IS	15	2,0	2,1	4,0	3,5	3,0	0,46	01'0	5,61	4,1	2,16	8,4
			DK - H	opmane	HOE	эронлас	ние (Ина =0 IH=06 Л	4A)			
ZHA [OM] 2,	5	2,0	1.5	2,0	3,3	3,5	8,0	=	ð	4	0,8	3,0
0 [H0]	5	د به	0,2	D,24	0,5	6.9	c, 5	40	0.3	0,4	0,6	0, 3
ISHON 6.	2	4,30	3,20	2,9	5,2	4.6	13,6	1,2	15,3	4.1	2.45	1.1
			n - M0	нbepch	ige Di	нэлоних	ue (H	N = 0	MA)			
AUK2 [04] 5		6	6.3	4,8	Q.	48	1		60	ę	y	7
IS HON 0,	,	0,36	2+'0	0,63	0,36	0,31	1	0,35	0,36	0,68	0,45	0,38

Рис. 2. Зависимости остаточных напряжений замкнутого транзисторного ключа с общим коллектором (ОК) от тока базы: а)схема нормального включения, б) схема инверсного включения.

6

7

ключа оказываются транэисторы КТ-342В, КТ-351Б, КТ-352А. Величина статистического разброса величин U_{K3} /5 /данных транзисторов при надежности 0,9 и числе измерений n = 10 в выбранных режимах не превышает 0,15 мВ. Исследование температурной зависимости U_{K3} дало значение U_{K3} / Δ T \leq 2 мкВ/ °С.

Для инверсного включения транзисторов по схеме ОК данные представлены на рис.2бив таблице,из которых можно видеть, что наклон характеристик U_K,/I_бсущественно больше, чем для нормального включения.

При работе транзисторных ключей всех исследованных схем включения в ЦАП с суммированием напряжений наблюдается изменение величин Uко замкнутых в зависимости от набранной кодовой комбинаключей ции. Это изменение определяется тем, что при переключении одного из разрядов ЦАП изменяются потенциалы во всех узлах резистивной матрицы (дискретного делителя напряжения - ДДН), что приводит к изменению нагрузочных токов всех замкнутых ключей и, следовательно, изменению величин напряжений U_к, (например, диапазон изменения токов нагрузки ключей для ДДН типа R - 2R, R = 5 кОм, $E_{2T} = 9$ В составляет 0,6 мА). Поскольку сопротивление замкнутого ключа отлично от нулевого, то погрешность ключей из-за этой особенности работы становится определяющей. Такой же эффект наблюдается при коммутации ключами изменяющихся по величине напряжений. На рис. 3 представлены зависимости номинальных токов базы транзисторов -(при которых U_{кЭ} = 0) от тока нагрузки для I_{б ном} нормального включения транзистора по схеме ОК (для различных транзисторов с I_н = 0,6 мА). Эти зависимости показывают, что для того, чтобы величина U оставалась равной нулю в эначительном диапазоне изменения токов нагрузки, необходимо изменять соответствующим образом ток базы транзисторного ключа. Если же ток базы делать постоянным, то изменение тока нагрузки приводит к возрастанию абсолютной погрешности ключа. На рис. 4 представлены зависимости величины U_{кЭ} замкнутого ключа от тока нагрузки I_н при фиксированных номинальных значениях тока базы

Рис. 3. Зависимости номинальных токов базы транзисторов (при которых U_{к9} =0) от тока нагрузки.

Рис. 4. Зависимости остаточных напряжений U_{K3} от тока нагрузки.

 $I_{6 \text{ HOM}}$ (см. рис. 3 при $I_{H} = 0,6$ мА). По этой зависимости легко определить сопротивление замкнутого ключа в рассматриваемых режимах. Так, для транзистора КТ-342В $r_{KЛ} = 2$ Ом, для КТ-351Б $r_{KЛ} = 1,5$ Ом. Причем при уменьшении тока нагрузки (и соответствующем изменении тока базы – см. рис. 3) это сопротивление возрастает (см. рис. 5).

Относительная универсальность вышеприведенных характеристик ключей состоит в следующем. При заданных разрешающей способности ЦАП, номиналах резисторов ДДН и погрешности на основе зависимостей, представленных на рис. 6 выбираем доступный тип транзисторов и максимальное значение тока нагрузки I_{H max} $\leq E_{\rm ЭТ}/3R$, чтобы абсолютное значение величины U_{KЭ} не превысило заданное. Для минимизации общей погрешности ЦАП необходимо, чтобы величина U_{КЭ} ключа каждого разряда (во всем диапазоне изменения токсв нагрузки) была симметричной относительно

Рис. 5, Зависимости остаточных напряжений U_{K9} от тока нагрузки для транзисторов КТ-342В и КТ-351Б для трех различных номинальных токов базы.

нулевого значения U_{K9} =0. То есть номинальный ток базы ключей выбираем из рис.5 для среднего значения тока нагрузки I_н = I_{н max}/2.

С учетом всего вышесказанного была составлена схема одноразрядной ячейки для двухпозиционного ключевого элемента десятиразрядного ЦАП (см. рис. 6). Транзисторы Т2, Т3 являются ключевыми. Транзистор Т1 совместно с дополнительными источниками питания E1, E2 задает режимы точных ключей и согласует их работу со стандартными логическими уровнями ТТЛ. При необходимости изменения значений величины E1,E2 и E_{ЭТ} необходимо изменить номиналы соответствующих резисторов в соответствиии с приведенной методикой.

Рис. 6. Принципиальная схема двухпозиционного ключа напряжения.

Рис. 7. Зависимость погрешности ЦАП из-за неидеальности ключей от входного кода.

Форсирующий конденсатор С1 служит для ускорения процессов переключения транзистора Т1, интегрирующий конденсатор С2 – для относительного выравнивания времен замыкания и размыкания ключей на транзисторах Т2 и Т3 (работающих противофазно). Времена установления с учетом задержек срабатывания такого ключевого элемента не превышают 800 нс. Погрешность ЦАП из-за неидеальности ключей, т.е. без учета погрешности ДДН, не превышает <u>+0</u>,7 мВ (см. рис. 7).

ЛИТЕРАТУРА

- 1. Смолов В.Б. и др. Микроэлектронные ЦА и АЦ преобразователи информации, Энергия, Л., 1976.
- 2. Анисимов В.И., Голубев А.П. Транзисторные модуляторы. Энергия, Л., 1964.
- Клебанский Р.Б. Преобразователи кода в напряжение, Энергия, Л., 1973.
- 4. Богдель А.А., Дражев М.Н. ОИЯИ, 13-9110, Дубна, 1975.
- 5. Касандрова О.Н., Лебедева Д.В. Обработка результатов наблюдения, Наука, М., 1970.

Рукопись поступила в издательский отдел 28 июня 1978 года.