ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

С.А.Бунятов, Б.Ж.Залиханов, В.С.Курбатов, А.Халбаев

0203

СЦИНТИЛЛЯЦИОННЫЙ ДЕТЕКТОР ДЛЯ ИЗМЕРЕНИЯ ВРЕМЕНИ ПРОЛЕТА И КООРДИНАТЫ ВЗАИМОДЕЙСТВИЯ НЕЙТРОНОВ

13 - 10203

С.А.Бунятов, Б.Ж.Залиханов, В.С.Курбатов, А.Халбаев*

СЦИНТИЛЛЯЦИОННЫЙ ДЕТЕКТОР ДЛЯ ИЗМЕРЕНИЯ ВРЕМЕНИ ПРОЛЕТА И КООРДИНАТЫ ВЗАИМОДЕЙСТВИЯ НЕЙТРОНОВ

Направлено в ПТЭ

ON C N ONCIN

* Институт ядерной физики АН УзССР

Бунятов С.А. и др.

13 - 10203

Сцинтилляционный детектор для измерения временн пролета и координаты взаимодействия нейтронов

Описан сцинтилляционный детектор для измерения времени пролета и координаты взаимодействия нейтронов, состоящий из пяти сцинтилляционных слектрометров размерами 70х10х10 см³. Детектор исследован на пучках заряженных и нейтральных частиц.

Для заряженных частиц получено пространственное разрешение (3,0+0,1) см, по времени пролета (400+20) пс. Разрешение по времени пролета для нейтронов с энергией 8.87 МэВ ≤1.2 нс, а для гаммаквантов с энергией (67,5+15) МэВ - ≤ 0,9 нс.

Приводится описание системы временной калибровки и контроля стабильности детектора в процессе эксперимента.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований

Дубна 1976

🖸 1976 Объединенный институт ядерных исследований Дубна

В настоящей работе описывается детектор, предназначенный для измерения угловых и энергетических распределений нейтронов, образующихся в реакциях

$$\pi^{-} \mathbf{P} \rightarrow \pi^{\circ} \pi^{\circ} \mathbf{n},$$

$$\pi^{-} \mathbf{P} \rightarrow \pi^{\circ} \gamma \mathbf{n},$$
/2/

при энергии первичного мезона, равной 230 и 270 МэВ.

Малая величина сечений реакций /1/ и /2/ /например, $\sigma(1) = 0.32\pm0.04$ мб при $E_{\pi^{-}} = 270 M_{3}B^{71}//$ предъявляет к детектору ряд особых требований. Он должен обладать достаточно высокой эффективностью регистрации нейтронов в диапазоне 10-100 МэВ. Для надежного разделения исследуемых нейтронов и нейтронов, образующихся в фоновой реакции $\pi^- P \rightarrow \pi^\circ n$, необходимо иметь разрешение по времени пролета /1÷1,5/ нс. Наконец, при использовании детектора на пучке ускорителя необходимо обеспечить стабильность работы в течение длительного времени. Изменение цены канала анализатора во времени не должно превышать /50 100/пс.

1. Описание детектора

Детектор тилляционных

нейтронов пяти сцинсостоит из спектрометров размерами

70 x

/1/

х 10х10 см³, каждый из которых просматривается с противоположных торцов двумя фотоумножителями типа ФЭУ-30. Все пять спектрометров располагаются друг над другом, образуя "стенку" объемом 70х50х10 см³. Конструкция одного спектрометра описана в работе $^{/2/}$.

Внешний вид детектора показан на *рис. 1.* Корпуса ФЭУ закреплены винтами к раме размерами 51x130 см², которая способна перемещаться в горизонтальной плоскости. Перемещение детектора в вертикальной плоскости

Рис. 1. Общий вид детектора нейтронов.

осуществляется с помощью редуктора. Вся система счетчиков закреплена на подвижной платформе, вращающейся вокруг оси. Положение оси выбрано таким образом, чтобы при расположении детектора под углами О[°]или 14[°] по отношению к падающему пучку расстояние между центрами мишени и детектора оставалось неизменным.

Детектор расположен на расстоянии 2 M от центра мишени, при этом аксептанс по полярному углу составляет 20°, а по азимутальному углу - 14°.

Чтобы избавиться от заряженных частиц, вылетающих из мишени, и рассеянных частиц пучка, непосредственно перед детектором установлены два сцинтилляционных счетчика размерами 55х45х1 см³, которые включены в канал антисовпадений.

Схема включения фотоумножителей детектора приведена на рис. 2. Аноды ФЭУ, расположенные с одной стороны, соединяются параллельно короткими отрезками кабеля $\ell = 12$ см, $\rho = 100$ Ом/. Сопротивление R = = 100 Ом служит нагрузочным сопротивлением одновременно для всех пяти фотоумножителей. Фотоумножители $(A_1 \div A_5)$ и $(B_1 \div B_5)$ располагались таким образом, чтобы время задержки соединительных отрезков кабеля компенсировало разницу во времени пролета фотоэлектронов через, умножающую систему фотоумножителей. Сигналы с анодов ФЭУ, несущие информацию о моменте регистрации, поступают на универсальный дискриминатор /3/ работающий в режиме следящего порога. Используемый метод включения ФЭУ позволяет сократить до минимума число электронной аппаратуры во временных каналах детектора и повысить его надежность.

Недостатком используемого метода включения фотоумножителей является прохождение анодного сигнала ФЭУ через межэлектродную емкость анод-динод на диноды соседних фотоумножителей. Для устранения этих сигналов в динодных цепях каждого ФЭУ используются полупроводниковые диоды Д311, включенные в прямом направлении. Схема включения диодов показана на *рис. 2*.

На *рис.* 3 дана схема экспериментальной установки для исследования реакций /1/ и /2/. Она включает в себя мониторный телескоп, состоящий из пяти сцинтилляционных счетчиков M1, Б11, M3, M4 и M5, 4-каналь-

Рис. 2. Схема включения фотоумножителей и блок-схема электронной аппаратуры нейтронного детектора и спектрометра по времени пролета: (A1 ÷ A5) и (B1 ÷ B5) -ФЭУ-30; ОО3, О57 - формирователи/5,14/; ОО4, О52 схемы совпадений /5,14/; ОО6, О18 - сумматоры /5/; О50 - стробируемая схема совпадений /14/; О17, (T-A)конверторы; О34 - годоскоп. ный годоскоп черенковских гамма-спектрометров полного поглощения^{/1/}, спектрометр по времени пролета /БІ, БІІ/ и детектор нейтронов.

"Базовый" счетчик БІІ задает начало измеряемому временному интервалу исследуемых нейтронов. С помощью спектрометра /БІ, БІІ/^{/4/} из пучка по времени пролета выделяются электроны, которые используются для временной калибровки и контроля стабильности параметров детектора в процессе эксперимента. Калибровочные счетчики К1 и К2 размерами 55х2,Ох1,5 см[°] нужны для контроля координатного разрешения детектора нейтронов.

Чтобы уменьшить величину временных сдвигов в зависимости от изменения высоковольтного напряжения, фотоумножители детектора запитываются от одного высоковольтного стабилизированного источника типа ВС-28. Блок-схема электронной аппаратуры нейтронного детектора и спектрометров /БІ, БІІ/ приведена на *рис. 2.* Сигналом "Запуск" для детектора служит либо сигнал уу-совпадений от двух черенковских спектрометров,

6

либо от пучковой частицы, прошедшей через детектор и счетчики БІ, БІІ и КІ или К2. Сигналы от детектора, несущие временную информацию, поступают на три время-амплитудных конвертора, работающих по принципу "старт" - "стоп" ^{/5/}.Время между сигналами со счетчика БІІ и каждым ФЭУ одного из спектрометров измеряется конверторами 1 и 2. Координата точки взаимодействия нейтрона определяется конвертором 3. Чтобы измеряемое время пролета нейтронов не зависело от места и угла попадания нейтрона в детектор, а также от скорости распространения светового сигнала в сцинтилляторе, выходные сигналы конверторов 1 и 2 суммируются в процессе обработки информации на ЭВМ "Хьюлетт-Паккард 2116-С". Номер спектрометра, в котором зарегистрирован нейтрон, определяется с помощью годоскопа $O34^{-5/}$.

2. Исследование детектора на заряженных и нейтральных частицах

Исследование детектора заключается в определении пространственного разрешения и разрешения по времени пролета. Методика исследования детектора в целом не имеет принципиального отличия от калибровки одного спектрометра^{/2/}. Поэтому кратко перечислим результаты измерений, усредненные по пяти спектрометрам.

Все измерения проводились на проходящем через детектор пучке π^- -мезонов с импульсом 168 $M_{3B/c}$ и шириною 2 см/ счетчики К1 и К2/. Амплитудное разрешение ФЭУ равно /25±1/%. Длина поглощения света в сцинтилляторе - /22О±3О/ см. Пространственное разрешение детектора с учетом конечной ширины счетчиков К1 и К2 /2 см/ равно /3,0±0,1/ см /полная ширина на полувысоте/. На рис. 4 показаны спектры пространственного разрешения для одного из спектрометров и зависимость положения максимумов этих спектров от координаты прохождения частицы через спектрометр.

Разрешение детектора по времени пролета определялось по спектру от релятивистских электронов, содер-

Рис. 4. Спектры пространственного разрешения и зависимость положения максимумов этих спектров от координаты прохождения частиц пучка через спектрометр. 1 канал = 0,3 см.

жащихся в пучке, и составило /4OO \pm 2O/ nc /полная ширина на полувысоте/. Спектр по времени пролета пучка отрицательных частиц / π^- , μ^- , e^- / с импульсом 168 МэВ/с, измеренный на пролетной базе 2 м, показан на рис. 5. Исследование детектора на нейтральных частицах проводилось в специальном эксперименте. Использовалась реакция радиационного захвата остановившихся π^- -мезонов в жидководородной мишени

 $\pi^- P \rightarrow \gamma n.$ /3/

Кинетическая энергия нейтронов, образующихся в данном процессе, равна 8,87 *МэВ* / $\beta_n = 0,1365$ /, а энергия гамма-квантов - 129,4 *МэВ*. Нейтроны с этой энергией использовались для измерения разрешения детектора по времени пролета.

При остановке *п*-мезонов в водороде, кроме реакции /3/, происходит реакция перезарядки

$$\pi^{-}P \rightarrow \pi^{\circ}n \qquad /4/$$

Рис. 5. Спектр по времени пролета пучка отрицательных частиц (π^-, μ^-, e^-) с импульсом 168 МэВ/с. 1 канал = = 55 пс.

в которой образуются два гамма-кванта с энергией /67,5<u>+</u>15/ *МэВ.* Эти гамма-кванты использовались для временной калибровки шкалы анализатора.

Схема эксперимента показана на рис. 6. Гаммакванты от реакций /3/ и /4/ регистрировались одним черенковским гамма-спектрометром полного поглощения, расположенным на расстоянии 25 см от центра мишени. Непосредственно перед черенковским спектрометром располагался сцинтилляционный счетчик размерами 20x20x1 см³ и включался в канал антисовпадения. С целью уменьшения углового диапазона регистрации гамма-квантов перед сцинтилляционным счетчиком устанавливался свинцовый коллиматор с диаметром отверстия 9 см и толщиною 5 см. Исследуемый нейтронный спектрометр располагался напротив черенковского

Рис. 6. Схема калибровки спектрометров на нейтральных частицах.

спектрометра на расстоянии 35 см от центра мишени и включался с ним на совпадение. Из-за нечувствительности черенковского счетчика к нейтронам, образующимся в реакции /3/, сцинтилляционным спектрометром регистрировались только гамма-кванты реакции /4/ и нейтроны реакции /3/. Время пролета нейтронов и гамма-квантов измерялось конверторами 1 и 2 /рис. 2/. Выходные сигналы конверторов складывались в схеме линейного сложения и затем поступали на анализатор АИ-4096.

Рис. 7. Спектр по времени пролета гамма-квантов и нейтронов 1 канал = 0,15 нс.

Измерения проводились для мишени, наполненной водородом, и мишени без водорода. Результат измерения на рис. 7. Отчетливо видпоказан водороде на времени пролета, первый из спектра по ны два которых соответствует гамма-квантам реакции /4/. а второй - нейтронам реакции /3/. Интервал между пиками равен 9 нс /1 канал = 0,15 нс/. Наблюдаемая асимметрия временных распределений вызвана разбросом пролетного расстояния от мишени до нейтронного спектрометра. Разброс этого расстояния определяется конечными размерами мишени / 12 см/, толщиной сцинтиллятора исследуемого спектрометра на пути нейтронов и гаммаквантов /10 см/ и угловым диапазоном регистрации черенковского сиектрометра /~30°/. Так как передние части временных распределений соответствуют гаммаимеющим минимальный разброс квантам и нейтронам, по пролетному расстоянию, то их можно использовать для получения оценок величины разрешения по времени пролета для нейтронов и гамма-квантов. Как видно из *рис.* 7, разрешение по времени пролета исследуемого спектрометра ≤ 1,2 *нс* для нейтронов с энергией 8,87 *МэВ* и ≤ 0,9 *нс* для гамма-квантов с энергией /67,5±15/ *МэВ*.

В *таблице* приведены характеристики нейтронных детекторов, описанных к настоящему времени.

Таблица Характеристики нейтронных детекторов

	Работы	Кол-во, тип, размеры сцин-ра, см ³	Т п п ФЭУ	Цучок, МэВ/с.	Простр. разреш. 2 Δ X, см	Разрежение по времени пролёта, 2 <i>Т</i> ,но
	Мюллер и др. /7/	5 Поливинил- толуол, (160, Ø 10)	56 AV P	П ⁻ , 1860	4,3	0,60
				P. 440	2,5	0,60
	Боллини и др. /8/	I2 Полтвинил- толуол, 100x18x18	XP-1040	п, 810	2,8	0,70
				n 370-940	5,0	I,40
	Аствацатуров и др./9/	І Полистирол ІЗОх8х8	56 AVP	п ⁻ , 4000	3,4	0,76
	CTmep /II/	∦E - IIO 200xI6xI6 8	56 ДVР	г, ү,	3,6 -	- 2,80
	Рихвицкий и Полистирод др. /10/ I20хI0хI0 т	Полистирол 120х10х10 т	XP-1020	п 4000	3,6	0,56
		· •	<i>Ф3</i> У-63	п ⁻ , 4000	5,3	0,64
		5 Настоящая Полистирол работа 70xI0xI0	фэу-30	П ⁻ , 168	3,0	0,40
	Настоящая			И, 8,87 МэЕ	-	≤ I,20
	ресота			ў, 67,5 МаВ	-	≤ 0,90

Для вычисления эффективности регистрации нейтронов детектором была написана специальная программа Монте-Карло. 3a исходную была взята программа ТОТЕFF ^{/6/}, по которой рассчитывается эффективность регистрации нейтронов в интервале энергий от 1 до 100 МэВ для сцинтилляторов цилиндрической и прямоугольной формы. Используемая программа была молифицирована с целью удовлетворения конкретным условиям применения детектора и учета его особенностей. Были учтены возможные переходы нейтронов и вторичных протонов из одного счетчика в другой и эффект от поглощения света сцинтиллятором. Эффективность детектора рассчитывалась для 24 значений энергийнейтронов от 5 до 100 МэВ. Получено, что в диапазоне энергий нейтронов /5÷100/ МэВ при порогах регистрации 2 и 9 МэВ она равна в среднем 13,5% и 5% соответственно.

3. Калибровка и контроль стабильности параметров нейтронного детектора

Для установления зависимости между измеряемыми величинами (T_1 , T_2 , θ) и соответствующими каналами анализатора необходимо провести калибровку детектора с помощью частиц с известной и постоянной скоростью. Использование в этих целях гамма-квантов от распада π° -мезонов /11/, образующихся при взаимодействии первичного пучка с веществом мишени, требует расположения перед детектором свинцовых конверторов. Это приводит к дополнительному фону. Кроме того, такой метод применим для реакций с образованием большого числа гамма-квантов.

В нашем случае временная калибровка детектора проводится с помощью электронов, содержащихся в пучке π -мезонов. Доля их в пучке π -мезонов с энергией 230 *МэВ* составляет 3% / 12/, т.е. при интенсивности пучка, равной $3x10^5 c^{-1}$ количество электронов составит примерно $9x10^3 c^{-1}$.

Калибровка детектора перед началом измерения осуществляется в следующей последовательности. Детектор нейтронов /ДН/ устанавливался на пути первичного пучка π^- -мезонов. Анализируются события БІхБІІхДНх /K₁ илиK₂/. Тип частиц (π , μ , e) определяется с помощью спектрометра /БІ, БІІ/ по времени пролета ими расстояния между счетчиками БІ и БІІ.

Рис. 8. Спектр по времени пролета частиц пучка с импульсом 340 МэВ/с / Е_т= 230 МэВ/.

Информация о пучке с выхода схемы сложения / puc. 8/, а также сигналы с конверторов 1,2,3 и годоскопа О34 через стойку многомерного анализа /СМА/^{/13}/поступают на ЭВМ "Хьюлетт-Паккард 2116С". После обработки информации для каждого спектрометра выводятся спектры по времени пролета электронами расстояния между

Рис. 9. а/ Спектры по времени пролета электронов пучка и нейтронов от реакций $\pi^- P \to \pi^\circ \pi^\circ n$, $\pi^- P \to \pi^\circ \gamma n$, $\pi^- P \to \pi^\circ n$. б/ Пространственное разрешение детектора для электронов пучка и распределение нейтронов от реакций /1/, /2/, /4/... счетчиком БІІ и нейтронным детектором. По этим спектрам определяются цена канала анализатора, разрешение по времени пролета и относительные задержки сигналов в спектрометрах.

Спектры пространственного разрешения спектрометров, соответствующих точкам расположения счетчиков К₁ и К₂, строятся для всех частиц пучка.

Для контроля стабильности временного и координатного разрешения, а также цены канала анализатора в процессе эксперимента /детектор находится в рабочем положении под углом 14 по отношению к направлению первичного пучка/ вместе с нейтронами, образующимися в реакциях /1/ и /2/, анализируются события БIхБIIхДНх /K₁ или K₂ /.

На рис. 9а показаны спектры по времени пролета электронов пучка и нейтронов, образующихся в реакциях /1/, /2/, /4/. В этом случае для запуска детектора использовались сигналы одного черенковского спектрометра. Для этого же спектрометра на рис. 96 показано координатное разрешение для электронов пучка и распределение нейтронов от реакций /1/, /2/, /4/ вдоль спектрометра. Положение максимумов временных и координатных распределений, полученных для электронов пучка /рис. 9/, а также цена канала анализатора сохранялись неизменными в течение 15 ч непрерывной работы. детектора.

Таким образом, созданный детектор удовлетворяет всем основным требованиям для исследования нейтронов, образующихся в широком энергетическом и угловом интервалах.

Авторы выражают благодарность В.Г.Зинову, Ю.Г.Будяшову за обеспечение электронной аппаратурой, Б.ЮБалдину, В.М.Гребенюку, З.В.Крумштейну за полезные обсуждения, Н.А.Лебедеву - за помощь при изготовлении и исследовании детектора.

Литература

1. С.А.Бунятов, Г.В.Жолобов, Б.Ж.Залиханов, В.С.Курбатов, М.М.Мусаханов, А.Холбаев, В.А.Ярба. ОИЯИ, Р1-9668, Дубна, 1976.

- 2. С.А.Бунятов, Б.Ж.Залиханов, А.Халбаев, Г.М.Штауденмайер. ОИЯИ, Р13-6222, Дубна, 1972.
- 3. Б.Ю.Балдин, З.В.Крумштейн, А.И.Ронжин. ОИЯИ. 13-9850, Дубна, 1976.
- 4. С.А.Бунятов, Б.Ж.Залиханов, В.С.Курбатов, А.Халбаев. ОИЯИ, 13-10156, Дубна, 1976.
- 5. В.Ф.Борейко и др. ОИЯИ, 13-6396, Дубна, 1972.
- 6. N.R.Stonton. Preprint COO-1545-92, Ohio State University, 1971.
- 7. H.Muller et al. A Neutron Counter with Position Determination. Interner Bericht. Karlsruhe, 1966. 8. D.Bollini et al. Nuovo Cimento, 61A, 125, 1966.
- 9. Р.Г.Аствацатуров, И.Ф.Колпаков, В.А.Смирнов, М.Н.Хачатурян. ПТЭ, №1, 77, 1971.
- 10. С.В. Рихвицкий, И.Н. Семенюшкин, А.Н. Хренов. ОИЯИ, 13-8152, Дубна, 1974.
- 11. U.Stier. Ein Szintillationszahler zum ortsnachweis von Neutronen. Institut fur Experimentalle Kernphysik, Universitat Karlsruhe, 1970.
- 12. С.А.Бунятов, Б.Ж.Залиханов, В.С.Курбатов, А.Халбаев. ОИЯИ, 13-10157, Дубна, 1976.
- 13. А.Н.Синаев, А.А.Стахин. ОИЯИ, 13-7656, Дубна, 1974.
- 14. В.Ф.Борейко, В.М.Гребенюк, В.Г.Зинов. ПТЭ, №1, 84, 97, 1976.

Рукопись поступила в издательский отдел 1 ноября 1976 года.