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Introduction 

All relations of the relativistic kinematics become much simpler if the reactions are described in the three-dimen­

sional velocity space, whose geometry is isomorphic to Lobachevsky's/1,2/, Such a description is especially con­

venient for studying the reactions involving the particles with spins. The method is simple because both the veloci­

ties and spins are considered as the three-dimensional vectors (not the 4-vectors ). The relativistic effect reduces 

to a change in the metric of the velocity space, or, what is the same, in the vector addition rule. 

One of the representations which has recently becomes very popular is that of Wick-Jacob/3,4/. According to the 

latter the spin of the particle is characterized by its projection on the linear momentum of the particle itself in the 

centre-of-mass system. 

At the first glance, such a definition is not covariant, since the scalar product of a 4--spin and a 4--roomentum vani­

shes by definition, and the projection of the vector part of the spin on the 3-momentum is not an invariant. 

To make the covariant explicit it is more convenient to define the helicity as a projection of the 3-vector of the 

spin upon the direction of the relative velocity of the particle and the origin of the centre-of-mass system ( we shall call 

it an (s system ).This projection is, obviously, a relativistic scalar. It is also clear that one can choose, as a frame of 

reference, any other system ( e.g. the rest system of any of the particles ). 

In the modem field theory we face the problem concerning the transition from the c.m.s. ( a system ) -to the 

c.m. system of the crossed reaction ( t system, see below ), This can be easily done by means of the m~d of kine­

matical graph. 

It is worthwhile to note that the method of the velocity space is most suitable to describe the spin effects in the 

reactions, for the directions of the coordinate axes in such problems are defined by the vectors of the momenta of the 

particles themselves, while in the problem concerning Stark or Zeeman effects ~ese directions are given in the coordi­

nate space by the external fields. 

2. Kinematical Graph and Notations 

We consider the reaction of the type ( s- channel ) 

'1' + '2' .. '3' + '4' (2.1) 

( figures denote particles ). 

The conservation law in the s - channel is as follows: 

(22.) 

( p
1 

is the 4-momentum with the components tz and p1 etc), 

The particle velocities are described by the points on the upper sheet of the three-dimensional surface of a hyper-

boloid* . 

..------------------
ThP. points on the lower of a hyperboloid correspond to antiparticles which are obtained from paJ'tlcle:-: by a transformation 

/1 a-p (by changing the aiRns of aiJ the components of the 4·momontum). Th,. Hcalar pruduPt or the particle momAptum by the 

anttpartic)e one Is equal, evidently, to p,=-m3 . 
Since the hyperbolic co~ine of the distance between the two points p /, and p /min Lobar-hnv .... k y' N Hpace "QQalR the ~-tnalar 4-

l • 2 
product of these two vectors, then the hyperbolic arc between the points corre~pondine;: to thn pa.rti,~l(• anti tho antiparticle equal" 

atAciJ{-l)=irr Thus, the transition from the parttc1A to the antiparticle I"> dr!'Rf!riht~d by a hyporboltC'! rotation by the antclc Iff 
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If we consider the paper plane to be a map of this surface, then the particle velocities may be represented the 

points 1 ••• 4 on this map. These points may be thought of as the ends of the vectors drawn from a coordinate origin 

whose exact position is of no importance and need not be indicated explicitly on the map. We are able to treat simul­

taneously all possible coordinate systems on the same figure, dealing only with the relative velocities of any two 

systems. The similar situation we have on the map of the world which gives all the distances between each pair of 

points on the earth's surface. 

Transition. between two coordinate systems is described, on our map of the velocity space, as the transition from 

the projections along one direction to those along the other. 

Going back to Fig. 1, we note that the points of the intersection of two diagonals represent the c.m.s. velocity. 

It corresponds to the 4-velocity with the components 

where in usual notations 

(~!.L_ 
vs 

;J, +p2 

vs ) 

B == ( p + p )
2 

== ( l + £ ) !_ ( p + 
I 2 I 2 I 

p )2 
2 

In addition to s in the field theoretical calculations one makes use of two more variables 

2 2 
(pl- P4) •(p2-pl) 

2 2 
u •·(p

1
-P, ) .. (P

2
-P

4
) 

and 2 2 2 2 
s + t + u -=·m 1 + m 2 + m 

1 
+ m 

4 

with corresponding velocity 4-vectors 

( ..!..L:.!__L_ 

vt 

( ll - l 2 

vu 

-+ -+ 
p c:::...J!__._ ) 

vt 

-+ -+ 
p,- P, ) 

vu 
In many problems vectors (2.8) and (2.9) turn out to be space-like. In this case the points 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

and u which corres-

'pond to them in the velocity space will be imaginary, i.e. belong to the hypersurface of another hyperboloid u2-u 2=-1 1 
0 

Such points are known in Lobachevsky's geometry, and we shall deal with them later on. 

Let us calculate the lengths of sides and diagonals of a kinematical quadrangle (1423). Using that 

(2.10) 
P p = m m ch (12) etc 
l 2 I 2 

we get by squaring expressions (2.4), (2.5) and (2.6) 
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(2.6) 

(2.9) 
I 

I 
corree- I 

t 
a2-a2=-1, I 0 

(2.10) 

' 

I 
~ 

ch (23)- -(2m, m,) 
-l 

ch(42)•-,(2m m )-1(u- m2 -m2 ) 
4 2 4 2 

(2.11) 

Now we can determine all the angles of the graph by means of the cosine theorem. 

For instance, for the angle (213), we find: 

COB (213) = ch(31) ch{12) - ch (23) 

sh (31) sh ( 12) 
(2.12) 

' The kinematical graph of Fig. 1 determines all the directions which serve usually as coordinate axes. Consider the 

nucleon-nucleon scattering as an example. The natural cases in the centre-of-mass system for this problem are v + v' 
, l l 

and v1 - v; , where v1 and v1 are the 3-velocity of one of the nucleons before and after collision. These 

directions are given on the kinematical graph by two orthogonal bisectors of the angles between the diagonals at the 

point s 

3. Transformation of Helicity Amplitudes 

We write as usual the transition matrix element for spin particles in the s system ( formula (1) in /3/ ) 

(3.1) 

J 
where the helicity amplitude S ( 1 is the orbital momentum ) is connected with the amplitude for the spins 

quantized along an incident beam ( the quantum numbers 

~ 
X D ,\ 

P., s 

Formula (3.2) has a simple meaning. The quantum numbers 
,\1 ••• characterize the spin projections on the four 

segments connecting point s in Fig. 1 with 4- vertices of a quadrangle. The direction of the incident beam in the same 

Figure is that from s towards '2'. In passing to the helicity amplitudes the projection of particle '1' will change 

sign, as the direction of the velocity '1' is that from s towards '1'. For particles in the final stat<'~ it is necessary 
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to ~tate the axes of quantization from (s2) to (s3) for the particle '3' and from (12) to (34) for particle '4'. The rota­

tion angles are, evidently, equal to. the scattering ones 8 and rr-6 , respectively. Two D factors in (3.2) cor­

respond just to the rotation of the quantization axes by these angles. 

The angle fb may be put equal to 0, as far as all the directions are in the same plane. The helicity quantization 

is usually described in the frame of reference s -One may transfer the quantization axes to any other frame of 

reference; for this purpose it is necessary to do parallel displacement between the corresponding points of the velocity 

apace. So, any transformation of the axes will involve their parallel displacement to another point and usual rotation 

at a new point. The best way for performing the parallel displacement is to rotate first the axis of quantization so that 

its new direction is that of the tangent to the geodesical line which connects the points representing velocity of both 

11fstems on the kinematical graph. The spin amplitude in this new representation becomes obviously the helicity ampli­

tude. The parallel displacement does not add anything new since the direction of tangent remains invariant under this 

displacement. 

'1\is gives just the geometrical interpretation of the helicity quantization. For example, the helicity A of partical 

'1' will be the same both in system s and the rest systems of particle '1' or particle '2', just as in any other system on 

tile non- Euclidian line connecting points '1' and '2'. Fig.2, 

It is worthwhile to mention that we have not used the fact that the velocity of particles are less than that of light. 

Since in Lobachevsky's projection plane the point at infinity is a,n ordinary one, then all the results hold for photons or 

neutrinos; only the angle for the corresponding vertex at infinity becomes zero. The photon spin ( its polarization ) is 

also quantized along the relative velocity of a photon and the coordinate origin. Since the vertex angle is zero, the 

direction of quantization remains invariant. 

So, we see that spins may be considered independently of the coordinate parts of the wave functions, the particles 

may be 'stripped' from spins just as in non-relativistic problems. The only difference in our case is that the rotation 

angles are computed by the formulas of the hyperbolic geometry and not of the euclidian one as in the non-relaticistic 

kinematics. 

4. s and t System. Crossing· Transformations 

· Let us consider a somewhat more complex case of transformation-the transition to the crossed reaction. The reaction 

obtained from (2.1) by interchanging particles '2' and '3' with the corresponding substitution of particles for antiparticles 

is called crossed reaction. For instance, if reaction (2.1) is the reaction 

- 0 p+IT-+n+IT 

then the crossed reaction will be 

"' P + n IT++ ITO 

How are the helicity amplitudes of the crossed reaction related to those of the original reaction ? 

In order to answer this question we construct a centre-of-mass system for the crossed reaction- the t -system. 

Since the conservation law for the crossed reaction assumes the form 
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A of partical 

other system on 

non-relaticistic 

The reaction 

t -system. 

(4.1) 

this system will have a 4-momentum ~ - p 4 We have already pointed out that this vector usually is space-
2 

like, so that t = ( 'i - ~ ) < 1 as in the case of elastic scattering of identical particles. The velo-

city of the -system will be in such a case greater than that of light. But this fails to introduce any difficulties 

whatsoever, as long as it is not the point t we are interested in, but only the direction to it. The directions to the 

point located 'farther than infinity' in Lobachevsky's plane,may be seen from the same kinem .. tical graph. 

Like system s is at the point of intersection of the straight lines defined by pairs (1.2) and (3.4), the system 

is given by the intersection ( real or imaginary ) of the straight lines defined by pairs of points (1.4) and (2.3). 

The intersection of straight lines (1.4) and (2.3) should be thought of as an 'external' intersection. This implies 

that these straight lines are regarded as arcs of circles with an infinitely large radius; one of the intersecting seg -

ments goes from point 4 to infinity. Then it comes back 'crossing the infinity' to point 1. Similarly the segment croHes 

points ( 2 , .. 3 ). 

If the particles have the same masses the transition to the crossed reaction is described by the following transform-

at ion s -+ - t 

t-+ - s 
(4.2) 

If the masses of the particles are different the transformation is given by reversing all the four components of the linear 

impulse of the correspoading particle. By such transformations in Fig. 1 the point 

and point s will come out ofit, so that they change their roles . 

is displaced inside the quadrangle 

It is clear now how of to pass to the new helicity amplitudes. First of all we displace the spin from the s -system to the 

rest system 1. Then we must rotate the quantization axis to the direction (41) , i.e. the angle (412) ( cf. Fig. 3). The 

rotation angle must be expressed in terms of s and . It is obvious that after crossing transformation the new 

amplitude will be transformed into normal helicity amplitude of the crossed reaction. 

Particle '2' has been quantized along the direction from s to '2'. In order to change this direction to that from 

to '2', we have to perform rotation by the angle rr -(321). Similarly we must rotate in their rest system the amplitudes es 

of particles '3' and '4'. As a result we get all the amplitudes to be quantized in the direction 'from t to their rest system'. 

To summarize, we can say; if the transformation of spinless amplitude (stripped amplitude ) is given by the same 

transformation of the arguments 

cr 
s -+ s 

(4.3) 

then the complete amplitude ( with spins) transforms according to the formula 

< ~ -\ I sc'l A, A4 > = 

=I Do\ (0 0 ,0) Dl!! (O,Op )D ~ (0 (}_IJ)D 54
, (O,(}_n) 

,\, ,\,\, • 1 ,\ A, 2 ,\ ,\' ' J '\ " r 
II 2 2 3 3 

4 (4.4) 

< A.' A.' I s I A., A., > 
3 4 l 2 
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where the angles (} are calculated by means of the kine~atical graph ( fig. 2 and 3 ): 

cos 8, =- cos ( 412); cos02 -cos (123); cos (}3 = - cos (234); 

cos (}4 = - cos (341); cos (abc J = c."(ba) ch(bc) -c..'! (ac) 

sh(ba) sh (be) 

S. Spin Addition 

It ia worth to add fe~ remarka on the addition of spina. Consider p _ P scattering aa an example. Let us suppose 

that aiaglet and triplet amplitadea are given in the s -channel. Then the spin part of the triplet scattering amplitude 

is given by the acalar product of triplet spin functions of initial and final states. It ia easy to see that this scalar 

product reaulta in the summation of spins of four particles in the following order (1+"})+()+4)=0 

The spin amplitudes in croaaed channel will correspond to the summation ( l + 4) + ( ~ + :! ) = f) 

These two summations are connected by the uaual Recah coefficients, which aerve aa transformation coefficients in the 

transition &om p A- pscattering in the s -channel, to p-p scattering in t- channel. 

I would like to expreas ~y sincere thanks to A.Popova for valuable diacuaaiona of the problema. 
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