ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

В.М.Вахтель, Г.В.Винель, Ц.Вылов, И.И.Громова, А.Ф.Новгородов, Ю.В.Норсеев, В.А.Халкин, В.Г.Чумин

ГАЗОТЕРМОХРОМАТОГРАФИЧЕСКИЙ МЕТОД ВЫДЕЛЕНИЯ АСТАТА.

11 B 11 B 0000

B-226

.....

4299/2-45

ОТНОСИТЕЛЬНЫЙ ВЫХОД ИЗОТОПОВ АСТАТА ИЗ УРАНА.



3/41-45

12 - 8996

12 - 8996

В.М.Вахтель, Г.В.Винель, Ц.Вылов, И.И.Громова, А.Ф.Новгородов, Ю.В.Норсеев, В.А.Халкин, В.Г.Чумин

ГАЗОТЕРМОХРОМАТОГРАФИЧЕСКИЙ МЕТОД ВЫДЕЛЕНИЯ АСТАТА.

ОТНОСИТЕЛЬНЫЙ ВЫХОД ИЗОТОПОВ АСТАТА ИЗ УРАНА.

Направлено в журнал "Радиохимия"

| ľ | Объединскийся поститут |
|---|------------------------|
| ļ | адерных веследований   |
| Į | GHGIMOTEKA             |

Ядерно-спектроскопические исследования изотопов с Z ~ 82 в широком диапазоне ядер от сильно нейтронодефицитных до сильно нейтроноизбыточных позволяют получать данные, необходимые как для выяснения справедливости существующих модельных представлений об основных и возбужденных состояниях ядер этой области, так и для проверки и уточнения новой модели альфараспада /1/.

Определенный интерес с этой точки зрения представляет астат. В реакциях глубокого расщепления ядер тория и урана протонами высоких энергий образуется больщое количество нейтронодефицитных изотопов элемента. Наряду с ними, в принципе, вполне вероятно появление и нейтронообогащенных изотопов астата с A > 220, которые до сих пор еще экспериментально не наблюдались. Для исследований спектров нейтронодефицитных изотопов астата и поиска его нейтронообогащенных изотопов необходимы высокорадиоактивные препараты короткоживущих нуклидов элемента в форме, пригодной для измерения альфа-спектров, разделения по массам на электромагнитном масс-сепараторе и сбора дочерних ядер нейтронообогащенных изотопов радона. Для получения таких препаратов астата требуется селективная, экспрессная раднохнымческая методика.

"Мокрые" способы выделения <sup>/2-5</sup>/из-за их относительной продолжительности в данном случае были непригодны. Более удобным казались методы, основаниые на летучести астата /или его соединений /<sup>/6-15</sup>/Но ни один из них нельзя было взять в качестве прототипа для дальнейшей работы, поскольку процессы отделения и очистки астата в газовой фазе требовали не меньше времени,

3

чем в водных растворах. Однако сам принцип газовой термохроматографии, по нашему мнению, наиболее подходил для создания новой высокоэффективной методики, в которой одновременно осуществлялись бы процессы отделения астата от материала мишени, его очистки от радиоактивных загрязнений и получения препаратов для физических экспериментов.

Настоящая работа посвящена разработке газотермохроматографического метода получения высокорадиоактивных, радиохимически чистых препаратов короткоживущих изотопов астата; применению метода для определения относительных выходов изотопов астата из урановой мишени и поиску гипотетических нейтронообогащенных изотопов пятого галогена.

## Экспериментальная часть

Материалом мишени для получения астата служил металлический уран природного состава, чистотой 99,72%. Облучались металляческие пластинки толщиной 1 мм и весом 5+1 г.

Мишени экспонировались на внутреннем протонном пучке / Е<sub>р</sub> = 660 *МэВ*/ синхроциклотрона ОИЯИ. Продолжительность облучения была 20±10 *мин*, интегральная радиоактивность мишени после облучения достигала 10 г-эке радия.

Аппаратура для выделения и очистки астата, схема которой показана на *рис.* 1, в принципе, была такой же, как в работе<sup>/16/</sup>. Внесенные изменения были связаны, главным образом, с необходимостью проведения эксперимента в защитной камере с помощью копирующих манипуляторов. Для кислородно-гелиевой смеси использовали технические газы без дополнительной очистки. Металлические фильтры из меди, серебра или платины, служившие для очистки астата от радиоактивных загрязнений в процессе его переноса вдоль газотермохроматографической колонки /ТХК/, изготавливались из фольг, толщиной около 50 мкм, имели контактную поверхность 15-20 с $m^2$ . ТХК представляла собой кварцевую



Рис. 1. Схема установки для газотермохроматографического выделения и очистки астата из урановой мишени. 1. Кварцевая лодочка для урановой мишени. 2. Кварцевая газотермохроматографическая колонка. 3. Серебряный фильтр  $\ell = 1-1,5$  см, S = 20-30 см<sup>2</sup>. 4. Отожженная в кислороде платиновая фольга. 5. Поглотитель с активированным углем. На нижней части рисунка кривая показывает распределение температуры вдоль ТХК, гистограмма - распределение At по ТХК. Заштрихованная часть гистограммы соответствует активности астата, осажденного на платиновой фольге, незаштрихованная - на кварце.

трубку диаметром 4 мм, длиной 300 мм и перепадом температуры по длине от 800 до 20°C / puc. 1/.

Анализ распределения летучих продуктов, вынесенных в ТХК, осуществлялся после окончания разделения. Для этого ТХК разрезалась на зоны длиной 3 см и каждая зона измерялась на гамма-спектрометре с Ge(Li)-детектором объемом 10 см<sup>3</sup>и разрешением 3-4 кэВ. Идентификация присутствующих в зонах элементов проводилась по характерным гамма-линиям изотопов этих элементов. При обработке гамма-спектров на ЭВМ "Минск-2" применялась программа ЭПОС-1/17/Погрешности в определении относительного содержания элементов по зонам для значений  $\geq$  40% не превышали 10% и для значений < 40% были не более 30%.

Сорбцию астата из газового потока проводили на полоске платиновой жести ЗО х З мм<sup>2</sup>, которую для лучшего извлечения элемента гофрировали и отжигали в атмосфере кислорода при 800-900°C.

Разделение препарата астата по массам проводили на электромагнитном масс-сепараторе Отдела ядерной спектроскопии и радиохимии./18/

Для получения ионов астата использовался плазменный ионный источник. Нагрев разрядной камеры источника осуществлялся раскаленным вольфрамовым катодом. Температура внутренних стенок разрядной камеры достигала ~1500° С. Возгонка астата с платиновой фольги, которая помещалась в ампулу из нержавеющей стали /puc. 2/, происходила при нагревании печи /4/ и вольфрамового катода ионного источника.

Астат возгонялся с платиновой фольги в вакууме при температуре ~300° С и адсорбировался на стенках трубки из нержавеющей стали при температуре ~20° С.

Распределение температуры вдоль подводящей трубки /5/, измеренное во время работы ионного источника при ряде значений токов нагрева печи /4/, показано на *puc.* 2.

На основе данных, полученных при измерении эффективности разделения изотопов астата, выбирались оптимальные положения ампулы /2/ и тока накала печи /4/, при которых возгонка и поступление в разрядную камеру астата происходит равномерно. В этом случае ионизация астата происходит с наибольшей эффективностью. Чтобы снизить потери астата из-за осаждения на стенках трубок /5/ и /6/, рабочий газ - Хе подавался в разрядную камеру так, чтобы он обтекал ампулу /2/.

Выбранные таким образом условия позволили получить эффективность разделения изотопов астата 6±1%.

При поисках гипотетических нейтронообогащенных изотопов астата, для отделения и сбора возможных дочерних изотопов радона, препарат астата на платине



Рис. 2. Распределение температуры вдоль подводящей трубки ионного источника при токах накала печи: 0,4,6, 8 и 10 А и схема устройства для возгонки астата в ионном источнике масс-сепаратора. 1. Разрядная камера. 2.. Ампула из нержавеющей стали. 3. Платиновая фольга с препаратом астата. 4. Печь. 5. Подводящая трубка из нержавеющей стали. 6. Шток, по которому подается газ (Xe) чи которым задается положение ампулы.

через 2 *мин* после его выделения помещали в пробирку, через которую продували гелий. Поток гелия системой фильтров очищался от возможных загрязнений астатом и другими элементами и проходил через охлажденную жидким азотом ловушку, в которой должен был вымораживаться радон. Ловушка представляла собой тонкостениый стеклянный сосуд, располагающийся над Ge(Li) детектором. Накопление радона начиналось через 20-25 мин после конца облучения. Время продувки гелия варьировалось от 5 мин до 2 час.

Раднохимически чистые препараты радона, необходимые для оценки относительных выходов нейтронодефицитных и нейтроноизбыточных изотопов этого элемента из урана в реакциях глубокого расщепления, получали при разделении смеси радноактивных благородных газов методом газовой хроматографии на цеолитах /19/.

## Результаты и обсуждение

Для получения астата в реакциях глубокого расшепления могут служить либо торий, либо уран. Сечения образования изотопов астата из тория почти на порядок выше, чем из урана /20/. Но из-за образования на его поверхности плотного слоя окислов металл даже при высоких температурах сгорает в атмосфере чистого кислорода очень медленно и в газовую фазу переходит лишь небольшая часть летучих продуктов ядерных реакций. Поэтому мы были вынуждены использовать в качестве мишени металлический уран, который начинает интенсивно взаимодействовать с кислородом уже при температуре 500°С. Скорость его горения, в основном. зависит от скорости подачи кислорода. По нашим оценкам, оптимальная температура реакционной зоны - 850+30°C /рис. 1/. При такой температуре проводилось сжигание урана во всех экспериментах. При использовании в качестве газа-носителя чистого кислорода было замечено. что до момента полного сгорания урана кислород, в основном, расходуется на окисление урана и в это время происходит неполный вынос из реакционной зоны летучих продуктов в зону термохроматографической колонки /ТХК/ /рис. 1/. Для устранения этого нежелательного эффекта в кислород добавлялся гелий из расчета 10% /по объем/, что повысило скорость переноса летучих продуктов в ТХК во время сгорания урана в 2-3 раза.

сенных из зоны ого урана, 15 *мл* активированный 3a 100% г облученного урана, вынесенных E зонам ТХК CM. эле ментов, 011 ŝ 30H Габлица 1 ó элементов TXK. дляна количества Ē мин., урана Распределение сгорання (0<sub>2</sub> +Не) <sub>1</sub> уголь/ ытвныф

,1

| Температура | н            | CN2          | ო            | 4            | വ            | 9            | 2                    | 8            | თ            | IO         | II         | 21                         | 13         | Ay         |
|-------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------------|--------------|--------------|------------|------------|----------------------------|------------|------------|
| 30 HHOE     | 860-<br>-785 | 785-<br>-640 | -500<br>-500 | 500-<br>-400 | 400-<br>-330 | 330-<br>-265 | <b>2</b> 65-<br>-205 | 205-<br>-155 | -110<br>-110 | -75<br>-75 | 75-<br>-50 | <b>-</b> 30<br><b>-</b> 30 | 30-<br>-25 |            |
| At          |              |              |              |              |              |              |                      |              | I,5          | 2,5        | 5          | 16                         | 21         | 52         |
| ŗ           |              |              |              |              |              |              |                      |              |              |            |            |                            | I,5        | 98,5       |
| Br          |              |              |              |              |              |              |                      |              |              |            |            |                            | 4          | 56         |
| Tc/Mo       | 0,3          | ო            | 4            | ~1           | 0,2          |              | 0,1                  | 0,3          | 9 <b>,</b> I | 14         | 4          | 13                         | 21         | 8 <b>3</b> |
| Ru          | 0,2          | 0.7          | ્ય           | I,5          | ო            | N            | н                    | 0,6          | ი            | 15         | ო          | ഹ                          | 14         | 43         |
| Po          | 2            | 34           | 48           | 16           |              |              |                      |              |              |            |            |                            |            |            |
| B1          |              | 77           | 67           | 16           |              |              |                      |              |              |            |            |                            |            |            |
| TT.         |              | 20           | 80           |              |              | *            |                      |              |              |            |            |                            |            |            |
| Те          | 42           | 28           |              |              |              |              |                      |              |              |            |            |                            |            |            |
| Ag          | 29           | 14           |              |              |              |              |                      |              |              |            |            |                            |            |            |

Как показал раднохимический анализ, из зоны сгорания урана в потоке газа -носителя фыносится в ТХК  $80\pm10\%$  At, Ро и Ві и лишь относительно небольшое их количество остается в  $U_3 O_8$ . Относительный вынос в ТХК других элементов нами не определялся. Распределение элементов вдоль ТХК приведено в *табл. 1*. Наибольшей летучестью обладали At, J, Br, Tc/Mo и Ru, большая часть которых сорбировалась в конце ТХК, при температурах < 50°С или поглощалась активированным углем. Для очистки от этих элементов - загрязнений мы использовали экспериментально обнаруженный нами факт: существенно большую, чем у астата высокотемпературную сорбцию их летучих продуктов некоторыми металлами из кислородсодержащей атмосферы / *табл. 2*/.

Различие в свойствах нанболее резко проявлялось на серебре в температурном интервале 450-500°С: фильтром задерживалась лишь небольшая часть астата и полностью извлекались из газового потока J, Вг и Tc/Mo. Полностью удалялся из газовой фазы и рутений: треть его сорбировалась серебром, а остальное количество оседало на кварце сразу же после фильтра. Можно предполагать, что это было связано либо с восстановлением  $RuO_4$  серебром, либо с каталическим разрушением на поверхности серебра термически неустойчивой четырехокиси. Возможно, что оба процесса протекали одновременно.

При температуре серебряного фильтра выше 500 °C становилось заметным уменьшение удерживания J и Br металлом, однако, сохранялась высокая эффективность очистки газового потока от этих галогенов, так как они, подобно рутению, осаждались на кварце непосредственно за фильтром. Этот факт можно объяснить образованием галогенидов серебра и их дальнейшим медленным переносом газовым потоком в низкотемпературную область /упругость паров Ag J и Ag Br при температуре 500° Ссоставляет ~  $10^{-3}$  мм рм.см./<sup>21/</sup>. Обнаруженное явление показывает, что процесс термического разложения бромидов и иодидов серебра при температурах 500-600°C термодинамически столь маловероятен, что им нельзя объяснить перенос галогенов вдоль ТХК, заполненной металлическим серебром, как это предлагалось в работе /<sup>22/</sup>. Таблица 2

Поглощение летучих продуктов /в %/ на фильтрах из меди, серебра и платины с контактной поверхностью 20-30 см<sup>2</sup> и длиной 1-1,5 см при различных температурах. Скорость подачи газовой смеси 100 мл/мин, вес облученного урана - 4-5 г, продолжительность сжигания урана 10 мин.

| Темпе Элемент<br>ратура в газо-<br>фильтра вой фазе | ▲t         | J           | Br T        | c/Mo       | Ru          | Ро          | Bi          | Tl    | Те  |  |
|-----------------------------------------------------|------------|-------------|-------------|------------|-------------|-------------|-------------|-------|-----|--|
|                                                     |            | Cu          | <u>φ</u>    | ильтр      |             |             |             |       |     |  |
| 160                                                 | 90         | 100         | 100         | <b>*</b> ) | <b>10</b> 0 | -           | -           | 100   | _   |  |
| <b>24</b> 0                                         | 26         | 96          | 73          | -          | 100         | -           | -           | 100 · | -   |  |
| <b>28</b> 0                                         | 16         | 84          | 76          | -          | I00         | -           | 100         | 97    | 100 |  |
| <b>3</b> 60                                         | 9          | 6 <b>4</b>  | 81          | -          | -           | I00         | I00         | 85    | 100 |  |
| <b>44</b> 0                                         | 0          | 8           | 34          | -          | -           | I00         | I00         | 3     | 100 |  |
|                                                     |            | Ă           | <u>e – </u> | ильтр      |             |             |             |       |     |  |
| <b>2</b> 50                                         | 20         | 89          | 100         | -          | -           | 100         | 100         | -     | 100 |  |
| <b>27</b> 0                                         | 19         | <b>9</b> 2  | I00         | 100        | I00         | -           | I00         | -     | 100 |  |
| 300                                                 | 26         | <b>9</b> 5  | <b>I</b> 00 | -          | ~           | 100         | 100         | -     | -   |  |
| 320                                                 | -          | 90          | 99          | I00        | I00         | 100         | <b>I</b> 00 | 100   | 100 |  |
| <b>4</b> 00                                         | <b>2</b> 0 | <b>I</b> 00 | I00         |            | -           | <b>I</b> 00 | I00         | -     | -   |  |
| <b>42</b> 5                                         | -          | I00         | I00         | I00        | I00         | I00         | I00         | 25    | 100 |  |
| <b>4</b> 50                                         | 13         | I00         | I00         | -          | <b>3</b> 0  | I00         | I00         | -     | 100 |  |
| 480                                                 | 3          | <b>I</b> 00 | I00         | I00        | 32          | I00         | I00         | 5     | 100 |  |
| 540                                                 | 0          | 86          | <b>I</b> 00 | -          | -           | 97          | 100         |       | -   |  |
|                                                     |            | Pt          | <u> </u>    | ильтр      |             |             |             |       |     |  |
| <b>24</b> 0                                         | 100        | 9 <b>9</b>  | 89          | -          | 100         | <b>I0</b> 0 | I00         | -     | -   |  |
| 310                                                 | 38         | 66          | <b>I</b> 00 | -          | <b>I</b> 00 | 100         | I00         | -     | -   |  |
| 420                                                 | <b>I</b> 4 | <b>2</b> 5  | 70          | -          | 100         | 100         | 100         | -     | -   |  |
| 550                                                 | 0          | 5           | 89          | -          | 81          | 100         | 100         | -     | -   |  |
|                                                     |            |             |             |            |             |             |             |       |     |  |

\*) Анализ не проводился

Выполненные эксперименты не позволяют сделать достоверные предполржения о том, в какой форме астат переносится в наших условиях вдоль ТХК и о механизме прохождения пятого галогена через серебряный фильтр.



Рис. 3. Зависимость адсорбции Atu J на покрытой окисным слоем платиновой фольге от температуры<sup>/1/S</sup>Pt≈2 см<sup>2</sup>5г U, сжигание 10 мин в смеси 0<sub>2</sub> + Не/100 мл/мин//.

Но то, что на нем в изученном температурном интервале /250-540° С/слабо сорбируется астат, однозначно, по нашему мнению, свидетельствует о низкой термодинамической устойчивости астатида серебра. Как показывают данные табл. 2, серебряный фильтр очень эффективно очищает астат практически от всех элементов, которые выносятся кислородно-гелиевой смесью в ТХК из зоны сгорания урана.

При использовании медных или платиновых фильтров глубокая очистка астата от брома и йода не достигалась / табл. 2/. Но с помощью этих металлов, и прежде всего платины, можно стабилизировать сорбционную зону астата. Зависимость абсорбции астата и йода на платине от температуры коллектора показана на рис. 3. При 50° С астат, адсорбированный на окисленной поверхности платины, прочно удерживается коллектором, и при обдувке газовой струей / ~100 см<sup>3</sup>/мин/ в течение часа не переносится в более низкотемпературную область.

| инов 9                                  | +            | 0                 | 0            | -              | *                     | ų                 |                 | ۲.                | σ           | Ę     | ۱E  | Þ |
|-----------------------------------------|--------------|-------------------|--------------|----------------|-----------------------|-------------------|-----------------|-------------------|-------------|-------|-----|---|
| . Темпера-<br>Эле-турв <sub>о</sub> зон | н 810<br>В10 | -735              | -235<br>-650 | -230-<br>-230- | 320-<br>320-<br>1320- | 320-<br>215       | 215-<br>- 100   | 100               | 45-<br>255- | ห่ะ   | S2  |   |
| At                                      |              |                   | 10,0         | 0,2            | е                     |                   | н               | IO                | 6           | 0,6   | 0,2 |   |
|                                         |              |                   |              |                |                       |                   |                 | (KEBDU)<br>74(Pt) |             |       |     |   |
| Ŀ                                       |              |                   |              | ્ય             | <b>8</b> 6            |                   |                 |                   |             |       |     |   |
| Br                                      |              |                   | 0,3          |                | 001                   |                   |                 |                   |             |       |     |   |
| c/Mo                                    | 0,05         | <b>1</b> ,0       | 0,2          | 0,7            | 6 <b>6</b>            |                   |                 | 0,02              |             |       |     |   |
| Ru                                      | 0,03         | 0,2               | <b>60</b> °0 | 0,5            | 32                    | 65                | ~               |                   |             |       |     |   |
| <b>P</b> o                              |              | 80                | H            | 42             | 8                     |                   |                 |                   |             |       |     |   |
| Bi                                      | 0,7          | 0,7               | 2            | <b>9</b> 6     | 1                     |                   |                 |                   |             |       |     |   |
| LT<br>LT                                |              |                   |              | ស              |                       | 16                | 4               |                   |             |       |     |   |
| Тe                                      | 0,2          | 0,6               | ო            | 44             | 53                    |                   |                 |                   |             |       |     |   |
| Ag                                      | 11           | ო                 | ო            | 33             | 60                    |                   |                 |                   |             |       |     |   |
|                                         |              |                   |              |                |                       |                   |                 |                   |             |       |     |   |
| •                                       | * Ag -       | фильтр            | = <u> </u>   | 1<br>C         | м, S                  | a 20              | cm <sup>2</sup> | помещ             | ен в        | центр | ð   |   |
| <b>7</b>                                | 4 30HM /     | /425-4            | 75° C/       | 10me           | - ropr                |                   | טערוע           | платин            | лый         |       |     |   |
|                                         | и цел        | rpe sur<br>krop L | ≈ 1,5 (      | seuce<br>cw, S | 1 1 V                 | CM <sup>2</sup> . |                 |                   |             |       |     |   |
|                                         |              | ,                 |              |                |                       |                   |                 |                   |             |       |     |   |

[]C

дноак

pa **yronb** 

активированный вая мишень 5

мишень

урановая

фольга,

ТХК

ное

вдоль

продуктов

летучих ◄

>

Распределение . /Длина зон - 3 платиновая фол

ĉ

Таблица

12

13

Таким образом, сочетание 1/ сжигания урана в кислородно-гелиевой смеси, 2/газотермохроматографического отделения астата от летучих радиоактивных продуктов с использованием кварцевой ТХК с серебряным фильтром и 3/ адсорбции астата из газовой фазы платиновым коллектором позволило нам создать методику экспрессного, не более 10 мин, получения радиохимически чистых препаратов астата.

В табл. З приводится распределение радиоактивных элементов в ТХК при оптимальных условиях выделения астата из урановой мишени. Чистота полученных препаратов оценивалась по результатам анализа гамма-спектров. Все наблюдавшиеся линии можно было приписать изотопам астата и продуктам их распада. Возможный уровень радиоактивных загрязнений, по нашим оценкам, не должен превышать 0,5%.

Спектры альфа-излучения препаратов астата измеряли на магнитном альфа-спектрографе. Их анализ позволил получить данные об относительных выходах изотопов с массовыми числами 203 < A < 211 из урана, облученного протонами с энергией 660 МэВ / табл. 4/.

При измерении у – и а -спектров препаратов астата мы, естественно, не могли наблюдать излучение, связанное с гипотетическими тяжелыми изотопами. Во-

## Табляца 4

Относительный выход изотопов астата из урановой мишени, облученной протонами с  $E_p = 660 M \Im B$ . Вес мишени - 5 г, время облучения - 30 мин, время выделения астата - 10 мин.

| Массовое число         | 211 | 209 | 208 | 207 | 206 | 205  | 204  | 203  |
|------------------------|-----|-----|-----|-----|-----|------|------|------|
| Относительный<br>выход | 0,7 | I,0 | 0,4 | 0,5 | 0,3 | 0,14 | 0,09 | 0,02 |
| Погрешность<br>(%)     | 12  | 28  | 24  | 16  | 18  | 17   | 4I   | 42   |

первых, они могли распадаться с испусканием только бета-частиц; а во-вторых, если предположить, что с максимальными выходами образуются  $2^{11,210,209}$  At и кривая, описывающая выходы изотопов астата в области нейтронообогащенных ядер, спадает также круто, как и в нейтронодефицитной, то ядра с A > 220 должны иметь относительные выходы на три порядка меньше, чем, например  $2^{09}$  At. Совершенно ясно, что обнаружить их прямыми измерениями на фоне других изотопов невозможно.

Правильность сделанной оценки о выходах тяжелых изотопов астата поддается экспериментальной проверке. Очевидно, что отношение выходов, например <sup>211</sup> At/<sup>222</sup> At из урана должно быть примерно такое же, как <sup>211</sup> Rn/<sup>222</sup> Rn. Последнее отношение относительно легко определить при измерении гамма-спектров "состаренных", радиохимически чистых препаратов радона. Выполненный нами анализ показал, что при облучении урана протонами /  $E_p = 660 M 3B$ / отношение выходов <sup>211</sup> Rn/<sup>222</sup> Rn  $\gtrsim$ 

2<sup>1</sup>10<sup>-3</sup>, что хорошо совпадает с экстраполяционной оценкой.

Для обнаружения нейтронообогащенных изотопов мы предприняли две экспериментальные попытки. В первом случае было проведено разделение по массам препарата астата примерно через полчаса после окончания облучения урана. На коллекторе масс-сепаратора была найдена в области A 2220 лишь исчезающе малая радиоактивность, связанная со случайными загрязнениями нейтронодефицитными изотопами астата.

Во второй серии экспериментов была сделана попытка обнаружить тяжелые изотопы астата по накоплению дочерних изотопов радона с  $221 \le A \le 224$ . Сбор радона начинали через 15-20 мин после окончания облучения мишени. Условия измерения были таковы, что дочерние изотопы  $^{221}$  Rn и  $^{222}$ Rn надежно идентифицировались, если бы  $^{221}$ At и  $^{222}$ At имели период полураспада 10 мин или больше, 100%-ную долю  $\beta^-$ -распада и число их ядер в начальный момент накопления радона было бы не меньше 0,2% от присутствовавшего в препарате  $^{209}$ At. В полученных гамма-спектрах мы не наблюдали гамма-линий изотопов, принадлежащих к цепочкам распада  $^{221}$  Rn и  $^{222}$ Rn. Поскольку в самом факте образования нейтронообогащенных изотопов астата в реакциях глубокого расщепления урана сомневаться не приходится, и предположения о доле  $\beta^-$ -распада и выходах  $^{221}$ At и  $^{222}$ At, вероятно, близки к истинным, отрицательный результат наших опытов, очевидно, связан с короткими, существенно меньше 10 мин, периодами полураспада искомых изотопов.

## Выводы

1. В кислородсодержащей атмосфере при температурах 250-540 °С соединения, образующиеся в реакциях паров астата с металлическим серебром, существенно менее термодинамически устойчивы, чем соединения йода и брома.

2. Это свойство астата обеспечивает его быструю и эффективную газотермохроматографическую /ГТХ/ очистку от радиоактивных изотопов галогенов и ряда других элементов, переходящих в газовую фазу при сжигании металлического урана в кислородно-гелиевой смеси.

3. ГТХ методика выделения астата из облученного протонами с Е<sub>р</sub> = 660 *МэВ* металлического урана позволяет получать радиохимически чистые, высокорадиоактивные препараты в форме, удобной для дальнейших физических экспериментов, не позже чем через 10 минут после начала обработки.

4. Выделенный из урана астат обогащен относительно долгоживущими изотопами с А ≥209, что связано с более высокими сечениями образования самих изотопов и их предшественников в радиоактивных цепочках распада.

5. Отрицательный результат поисков изотопов астата с A > 220, можно объяснить малыми, менее 10 минут, периодами полураспада нейтронообогащенных изотопов пятого галогена.

- 1. С.Г.Кадменский. Материалы 7-ой зимней Школы ЛИЯФ, Ленинград, стр. 374, 1972.
- 2. M.Lefort, G.Simonoff, X.Torrago. Bull.Soc.Chim., France, No. 10, 1726 (1960).
- 3. Б.П.Беляев, Ван Юн-юй, Е.Н.Синотова, Л.Немет, В.А.Халкин. Радиохимия, 2, 608 /1960/.
- 4. Ю.В.Норсеев. Диссертация, ОИЯИ-ЛГУ, М.-Л., 1965.
- 5. М. Бочварова, До Ким Тюнг, И.Дудова, Ю.В.Норсеев, В.А.Халкин. Радиохимия, 14, 6, 858 /1972/.
- 6. A.W.Stoner, E.K.Hyde. J.Inorg.Nucl., 4, No., 77 (1957). 7. R.W.Hoff, F.Asaro, J.Perlam. J.Inorg.Nucl.Chem.,
- 25, No. 11, 1303 (1963).
- 8. R.M.Latimer, G.E.Gordon, T.D.Thomas. J.Inorg. Nucl.Chem., 17, No. 1/2, 1 (1956).
- 9. J.M. Dairski. Thesis, UCRL-20412, 1970.
- 10. P.E. Thoresen, F.Asaro, J.Perlman. J.Inorg. Nucl. Chem., 26, No. 8, 1341 (1964).
- 11. E.H.Appelman. Thesis, UCRL-9025, 1960.
- 12. R Wolfgang, E.W.Baker, A.A.Caretto, T.B.Cumming, G.Frielander, T.Hudis. Phys.Rev., 103, 394 (1956).
- 13. Б.Айхлер. ОИЯИ, Р12-6661, Дубна, 1972.
- 14. J.Merinis. Thesis, Orsay, A. 21, 1965.
- 15. Б.Айхлер. ОИЯИ, Р12-6662, Дубна, 1972.
- 16. Б.Баяр, И.Воцилка, Н.Г.Зайцева, А.Ф.Новгородов. Радиохимия, 16,3, 329 /1974/.
- 17. Г.Элер, П.М.Гопыч, Г.В.Винель, В.Хабенихи, Л.А.Вылова, ОИЯИ, Р10-6817, Дубна, 1972.
- 18. В.П.Афанасьев, А.Т.Василенко, Й.И.Громова, Ж.Желев, В.В.Кузнецов, М.Я.Кузнецова, Д.Мончка и др. ОНЯИ, 13-4763, Дубна, 1969.
- 19. А.Колачковски, Ю.В.Норсеев. ОИЯИ, Р6-6923, Дубна, 1973.
- 20. M.Linder, R.N.Osborne. Phys. Rev., 103, 378 (1956).
- 21. Справочник химика, n/p Б.П.Никольского, Л.-М., 1962, т. 1, стр. 604.
- 22. Б.Айхлер, В.П.Доманов. ОИЯИ, Р12-7928, Дубна, 1974.

Рукопись поступила в издательский отдел 19 июня 1975 года.