

1 18

12-88-500

Чан Ким Хунг, М.Миланов, Ф.Рёш, В.А.Халкин

ИССЛЕДОВАНИЕ ЭЛЕКТРОМИГРАЦИИ КАТИОНА АСТАТА

Направлено в журнал "Radiochimica Acta"

1988

введение

Характерным свойством астата, отличающим элемент от других талогенов, является образование однозарядного катиона, устойчивого в кислых растворах в присутствии окислителя - шестивалентного хрома/1-3/. Состав катиона астата строго не установлен и поэтому его принято обозначать $At(0)^+$. Возможность существования положительных ионов галогенов в водных растворах теоретически и экспериментально наиболее подробно изучалась в работе /4/. Было показано, что однозарядные катионы галогенов должны стабилизироваться молекулой воды, участвующей в достройке электронных оболочек ионов. Из проведенного авторами анализа следовало, что только (H₂O)_n I⁺ /астат в^{/4/} не рассматривался/ достаточно устойчив для того, чтобы в растворе могла быть получена значительная доля галогена в форме гидратированного катиона или протонированной гипоиодной кислоты. На основании результатов потенциометрических измерений был сделан вывод о том, что при исходной концентрации 12 порядка 10⁻⁵ моль л⁻¹ термодинамическая устойчивость йод-содержащего катиона зависела, по существу, от констант равновесия следующих реакций:

$$l_2 + nH_20 \neq (H_20)_n l^+ + l^- K_1 = 1,2 \cdot 10^{-11} \text{ моль} \cdot n^{-1}$$
 /1/

$$(H_20)_n I^+ \neq H0I(H_20)_{n=2} + H_30^+ K_2 = 3 \cdot 10^{-2} \text{ моль} \cdot n^{-1}$$
. /2/

Несмотря на ряд допущений и экстраполяций, правильность которых ставилась под сомнение^{/5,6/}, выводы работы^{/4/}, по-видимому, достоверны, поскольку они косвенно подтверждаются результатами других авторов^{/7-10/}.

В прупле галогенов, благодаря нарастанию металлических свойств элементов с ростом атомного номера, астат должен иметь минимальный первый потенциал ионизации атома и, следовательно, можно предполагать, что вероятность образования гидратированного катиона астата будет выше, а константа реакции депротонирования (H₂O)_ПAt⁺ будет существенно меньше, чем для аналогичного соединения йода.

По нашим представлениям, именно в форме $(H_a 0)_n At^* = At(0)^*$ стабилизируется астат в кислых бихроматсодержащих растворах.

Вероятно, из-за прочно связанной воды, без отщепления которой катион участвует во многих реакциях, $At(0)^+$ по сумме известных свойств мало похож на катионы одновалентных металлов. Например, в отличие от Tl^+ , адсорбция $At(0)^+$ фосфорновольфраматом цезия происходит с коэффициентами распределения выше 10^3 толь-ко из растворов с температурой около 0° С, содержащих избыток Cs⁺. При этом изменение концентрации цезия более чем на два порядка слабо сказывается на процессе адсорбции/11,12/. Отличается поведение Tl^+ от $At(0)^+$ и при сорбции элементов на гидратированной окиси титана: в интервале pH 1,5-3.0 сорбция астата была максимальной и далее падала, тогда как д.зя таллия она имела четко выраженный ионообменный характер – была прямо пропорциональна pH/3,13/. Можно привести и другие примеры, в частности, адсорбцию $At(0)^+$ сульфокатионитами и металличЗской глатиной/2,14/, образование $At(0)^+$ комплексных соединеный/15/.

*--

.

Если исходить из представления об $At(0)^+$ как о протонированной гипоастатной кислоте, то следовало бы ожидать, что скорость миграции этого катиона в водных растворах в электрическом поле, в принципе, должна падать с ростом рН в результате реакции диссоциации, аналогичной реакции /2/. Действительно, предположение подтвердилось при экспериментальной проверке: подвижность астата уменьшилась с 2,67·10⁻⁴ см²B⁻¹c⁻¹ до 1,17.10-4 см²B⁻¹c⁻¹ при изменении pH от 0,6 до 1,7 в растворах H(Na)Cl04-K2Cr207 с ионной силой µ = 0,4, 25°C/16/. Рассчитанная константа реакции депротонирования $(H_20)_n At^+$ оказа-лась практически такой же, как и для $(H_20)_n I^{+/4/2}$: K_{dp} = ≖ 3,2(5)·10⁻² моль·л⁻¹. Но найденную величину следует рассматривать только как приближенную оценку, потому что в этих опытах не было исключено попадание продуктов электролиза в электромиграционную трубку, что приводило к изменению pH, окислительного потенциала и градиента напряжения. Такие же мотодические недостатки, осложненные нестабильностью температуры растворов электролитов, были и в экспериментах, в которых обнаружена различная подвижность астата, окисленного КаСгаОи Na₂S₂O₆ в HClO₄ 0,02 моль π^{-1} : 1,9(2) \cdot 10⁻⁴ см²B⁻¹c⁻¹ и 3,3(2) \cdot 10⁻⁴ см²B⁻¹c⁻¹ соответственно^{/1//}. Чтобы объяснить эти результаты, была высказана гипотеза об окислении астата персульфатом до трехвалентного состояния и о стабилизации At 3+ в форме оксикатиона астатозила - AtO^{*}.Электрофоретическая подвижность AtO⁺, по-видимому, должна быть выше, чем (H₂O)nAt⁺, так как движение последнего может тормозить координированная вода, образующая водородные связи с молекулами воды растворителя. Окисление астата до трехвалентного состояния было подтверждено результатами выполненной позднее работы/18/, в которой экстрагируемость элемента из водных растворов H_O_ или Na_S_O_ ди-

3

бутиловым эфиром однозначно интерпретировалась как извлечение в органическую фазу эфирата At³⁺.

Настоящее исследование посвящено проверке ранее определенной величины константы депротонирования $(H_20)_nAt^+$ и гипотезы о существовании в водных растворах кроме $At(\theta)^+$ другого катиона астата, предположительно $At0^+$. Возможность постановки исследования появилась после разработки и изготовления нами новой конструкции ячейки для горизонтального зонного электрофореза ионов/19/. В ней исключается попадание продуктов электролиза в электромиграционную трубку и отсутствуют гидродинамические потоки, размывающие активную зону, что позволяет получать воспроизводимые результаты прямых измерений скоростей миграции ионов/20-22/.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Астат, смесь радионуклидов ²¹¹At и ²¹⁰At синтезировали в ядерных реакциях висмута с α -частицами, ускоренными до 36 МэВ на изохронном циклотроне У-200 Лаборатории ядерных реакций ОИЯИ. Препараты астата готовили по ранее разработанной методике^{/23/}, на конечном этапе которой пары элемента поглощались в 30-50 мкл водных растворов, с заданными концентрациями водородных ионов, солей и окислителей. Концентрации K₂Cr₂O₇ и Na₂S₂O₈ в препаратах были $\simeq 1 \cdot 10^{-2}$ моль $\cdot л^{-1}$, величины pH изменялись от 0,7 до 4 в зависимости от задачи, $\mu = 0,25$. Окисление астата бихроматом проводили около получаса при 100°C, а персульфатом – при 50-60°C в течение 15-20 мин. Было замечено, что препараты астата со временем "стареют" и дальнейшее их использование приводит к невоспроизводимым результатам. Поэтому через каждые 8-10 ч готовились новые препараты.

Для измерения подвижности астата в электромиграционную трубку, заполненную фоновым электролитом, микрошприцем вводили от 1 до 5 мкл препарата, в зависимости от его удельной объемной активности. Фоновыми электролитами служили растворы $H(Na)Cl0_4$ 0,25 моль- π^{-1} - 5·10⁻³ моль- π^{-1} К₂Сг₂0₇ или Na₂S₂0₈, с рН от 0,7 до 10,4. Растворы готовили непосредственно перед экспериментом из реактивов квалификации "Химически чистые" и бидистиплированной воды.

Измерения подвижности астата проводили при 25,0(1)°С и градиенте напряжения АЕ = 10,0(1) В•см^{*1}. Местоноложение содержащей астат зоны определяли по максимуму ее активности. Актив ность измерялась сканирующим сцинтилляционным детектором с кристаллом Nat(11), присоединенным к многоканальному амплитудному анализатору, работающему в мультискейлерном режиме, что позволяло одновременно фиксировать расстояние максимума активной зоны от места ввода и время, прошедшее после начала эксперимента/24,25/. В течение одного эксперимента, продолжавшегося 1,5-2 ч, местоположение активной зоны определялось 15-20 раз, и по этим данным рассчитывалась скорость миграции астата /v = см·с⁻¹/ и его средняя подвижность $\overline{u} = v \cdot \Delta E^{-1} \ cm^2 B^{-1} c^{-1}$.

Систематическая относительная погрешность однократного определения подвижности астата во всех выполненных сериях измерений принята равной 10%. При заданных величинах рН катионная подвижность астата в перхлоратных растворах определялась, как правило, не менее двух раз. На графиках и в таблицах приведены среднеарифметические величины подвижностей, со статистическими погрешностями отдельного измерения.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

• 1

Средние величины подвижностей астата в растворах фоновых электролитов в зависимости от pH и природы окислителей приведены на рисунке и в таблице.Они показывают, что вплоть до pH = = 1,7 скорость миграции астата, окисленного как $K_2Cr_2O_7$, так и $Na_2S_2O_8$, изменяется совершенно одинаково. Эти данные не дают никаких оснований для предположений об окислении элемента персульфатом до иного, чем At (O)⁺, валентного состояния. Следо-

Рис. Поднижность катиона астата в эленсимости от pH растноров фоновых электролитов H(Na)Cl04 0,25 мользд⁻¹ = $K_2Cr_2O_7$ (¢) или $Na_2B_2O_8(\Phi)$ 5-10⁻³ мользд⁻¹, 25°C, Криная рассчитана по уравнению /8/,

Ta 6лица. Подвижность At(Θ)⁺ в H(Na)C104 0,25 моль. π^{-1} -K₂Cr₂O₇ или Na₂S₂O₈ 5.10⁻³ моль. π^{-1} , 25°C

рH	Окислитель в препарате	Окислитель в электро- лите	<u>и</u> (10 ⁻⁴ см ² B ⁻¹ c ⁻¹)	Число опреде- лен.
0,7	Na ₂ S ₂ O ₈	Na ₂ S ₂ O ₈	3,46(5)	6
	K ₂ Cr ₂ O ₇	K ₂ Cr ₂ 07	3,42(8)	5
	K ₂ Cr ₂ O _{7,1}	Na ₂ S ₂ O ₈	3,45(16)	2
1,7	Na ₂ S ₂ O ₈	Na2S208	3,14(10)	2
	K ₂ Cr ₂ O ₇	K ₂ Cr ₂ 07	2,76(14)	2
	$Na_2S_2O_8$	K ₂ Cr ₂ O ₇	2,84(4)	2
	K ₂ Cr ₂ O ₇	Na ₂ S ₂ O ₈	3,10(18)	1
2,1	$Na_2S_2O_8$	$Na_2S_2O_8$	2,60(15)	5
	$K_2Cr_2O_7$	$K_2Cr_2O_7$	0	2
	Na ₂ S ₂ O ₈	K ₂ Cr ₂ 07	0	2
6,3- 10,4	Na ₂ S ₂ O ₈	Na ₂ S ₂ O ₈	0	5

вательно, являются ошибочными выводы о существовании в водных растворах второй устойчивой катионной формы астата/17,18/. В относительно узком интервале концентраций водородных ионов /1,7 \leq pH \leq 2,1/ в растворах K₂Cr₂O₇ астат перестает мигриротвать, но сохраняется относительно высокая подвижность в растворах Na₂S₂O₈. Единственным приемлемым объяснением этого эффекта может быть восстановление At(0)⁺ до нейтрального соединения. Процесс, очевидно, связан с резким изменением окислительного, согласно уравнению Нернста, $|H^+|^{14}$. Если At(0)⁺ с соединение одновалентного астата, то восстановленной формой может быть только нейтральный атом астата. Потенциалы растворов, в которых происходит изменение окислительного состояния At(0)⁺, совпадают с потенциалом U_{OX}/red \approx 1,0 В для пары At¹⁺/At⁰/26/.

В связи с изложенным, необходимо отметить, что в растворах фоновых электролитов, не содержащих потенциалзадающих окислителей, At(o)⁺ превращался в нейтральную, не мигрирующую форму во всем исспедованном нами интервале pH от 0,7 до 10,4. Причи ной нестабиныности катиона пятого галогена в растворах без реа тентов-окислителей могут быть как реакции со следами восстано вителей неизвестной природы, так и необратимая внутримолекулирная реакция восстановления At^{1+} кислородом, с последующим окислением астатида до At^{0} по схеме:

$$H_2O)_nAt^+ \rightarrow At^- + O + 2H^+ + (n - 1)H_2O; At^- \rightarrow At^0$$
 /3/

В персульфатных растворах фоновых электролитов изменение концентарции водородных ионов не должно, теоретически, влиять на вероятность окисления At^o до At(Θ)⁺. Поэтому, основываясь на характере зависимости $\overline{u} = f(pH)$, можно предположить, что рост pH приводит не к восстановлению At(O)⁺, а к уменьшению относительных количеств катиона астата в растворах. Это уменьшение, очевидно, нельзя объяснить только реакцией депротонирования At(O)⁺:

$$(H_20)_n At^+ \neq At0H(H_20)_{n-2} + H_30^+.$$
 /4/

Анализ совокупности экспериментальных данных позволяет сделать приблизительную оценку величины термодинамической константы депротонирования:

$$K_{dp} = a_{AtOH} \cdot a_{H^+} \cdot a_{At(1)^+}^{-1} < 10^{-4}.$$
 /5/

Следовательно, при pH < 3, относительная активность At(0)* в растворе будет, в результате депротонирования, измеряться столь незначительно, что это заметно не скажется на величине средней подвижности астата:

$$\overline{u} = \frac{u_{At(1)}^{o} + \cdot a_{At(1)}^{+}}{a_{At(1)}^{+} + a_{Aton}^{-}} = \frac{u_{At(1)}^{o} + \cdot a_{At(1)}^{-}}{1 + K_{dp} \cdot a_{H}^{-1}} \cdot \frac{1}{6}$$

Мы предполагаем, что кроме реакции /4/, в растворах протекают быстрые равновесные процессы, замедляющие движение астата. Доминируют, вероятно, адсорбционные процессы на стекле электромиграционной трубки и на коплоидных микрозагрязнениях растворов. Так как и поверхность стекла и количественный состав коллоидных микрозагрязнений могут от опыта к опыту меняться, то их влияние на результаты измерений будет различным в различных сериях экспериментов. Этим, по нашему мнению, и объясняется разброс экспериментальных данных при работе с астатом, который существенно больше, чем при работе с другими однозарядными катионами, в частности, с NpO₂ и T1+/21,22/.

Хорэшей иллюстрацией неожиданных влияний микроколичеств элементов или их соединений на подвижность At(O)* могут служить результаты наших исспедований подвижности астата в растворах фоновых электролитов, содержащих, кроме персульфата, Ag⁺ $\approx 10^{-4}$ моль.л⁻¹. В этих растворах практически весь астат оставался на месте ввода, причем большая часть адсорбировалась на стекле элекромиграционной трубки. Способность сорбировать астат из растворов электролитов, уже не содержащих серебро, стекло сохраняло и после тщательной, многократной промывки растворами реактивов.

Чтобы проконтролировать растворы препаратов астата и фоновых электролитов на возможные микрозагрязнения коллоидами, сорбирующими катион астата, мы определяли подвижность астата, окисленного K₂Cr₂O₇ или Na₂S₂O₈, в растворах HClO₄ 0,25 моль·л⁻¹. Эксперименты далее ставили только с теми растворами, в которых получали величину $u = 3,4(1)\cdot10^{-4}$ см²B⁻¹c⁻¹. Она служила своего рода критерием относительной чистоты растворов и достоверности результатов.

Если принять гипотезу о том, что именно обратимая адсорбция астата стеклом и коллоидными микрозагрязнениями в растворах отрицательно влияет на его катионную подвижность, и допустить, что отношение адсорбированного астата (At_{ad})к астату в растворе линейно растет с увеличением pH:

$$At_{ad} = \delta \cdot pH \cdot (a_{At(i)} + a_{AtOH}) = \delta \cdot pH(1 + K_{dp} \cdot a_{H}^{-1}) \cdot a_{At(i)} + \frac{1}{77}$$

то, с учетом адсорбционного процесса, эмпирическое уравнение средней катионной подвижности астата будет иметь следующий вид:

Решение уравнения /8/ методом наименьших квадратов относительно трех содержащихся в нем констант дало следующие их величины:

$$K_{dp} = 7,6(3,0) \cdot 10^{-5}$$
 моль. n^{-1}
 $u_{At(0)}^{\bullet} = 3,80(5) \cdot 10^{-4}$ см⁴ $B^{-1}c^{-1}$
 $\delta = 0,18$.

Кривая на рисунке рассчитана по уравнению /8/ с использованием приведенных выше величин. Она хорошо совпадает с экспериментальными данными в интервале 0,7 \leq pH \leq 4,2. Вполне вероятно, что мы не смогли учесть все факторы, замедляющие электромиграцию At (θ)⁺ в водных растворах, и поэтому истинная величина K_{dp} еще меньше, чем определенная в этой работе. Но, тем не менее, она почти на три порядка ниже ранее рассчитанных для (H₂O)_ni^{+/4/} и (H₂O)_nAt^{+/16/}, что согласуется с представлениями о более высокой, чем у других элементов этой группы, устойчивости катиона пятого галогена в водных растворах.

Авторы считают своим приятным долгом выразить глубокую благодарность за большую помощь по синтезу астата на ускорителе У-200 Ю.С.Короткину, Б.А.Гвоздеву и Е.П.Череватенко, а также Ш.Милесу за проведение расчетов констант.

ЛИТЕРАТУРА

- 1. Ван Фуцзюн и др. Радиохимия, 1963, 5, с.351.
- 2. До Ким Тюнг, И.В.Дудова, В.А.Халкин Радиохимия, 1973, 15, с.548.
- Chalkin W.A., Herrmann E. Isotopenpraxis, 1975, 11, p.333.
- 4. Bell R.P., Jells E. J.Chem.Soc., 1951, p.2737.
- 5. Arotsky J., Symons M.C.R. ~ Quart.Rev.Chem.Soc., 1962, 16, p.282.
- 6. Yuan-tsan Chia. The Chemistry of 1⁺ lodine in the Alkaline Solution. Thesis UCRL-831 (1958).
- 7. Good M.L., Edwards R.R. J.Inorg.Nucl.Chem., 1956, 2, p.196.
- Allen T.L., Heefer R.M. J.Amer.Chem.Soc., 1955, 77, p.2957.
- 9. Eigen M., Kustin K. J.Amer.Chem.Soc., 1962, 84, p.1355.
- 10. Мищенко К.П., Флис Н.Е. Журнал прикладной химии, 1957, 30, с.665.
- 11. Норсеен Ю.В., Халкин В.А., Чао Таонань. Изв. Сиб.отд. АН СССР, сер. хим., 1965, 11, с.25.
- 12. Ван Фуцзюн, Норсеев Ю.В., Халкин В.А. В сб.: Соосаждение и адсорбция радиоактивных элементов. П., Наука, 1965, с.18.
- 13. Бочварова М., До Ким Тюнг, Халкин В.А. Журнал аналитич. химии, 1970, 24, с.1890.
- 45. Dreyer R. et al. Isotopenpraxis, 1986, 22, p.81.

- 16. Milanov M. et al. J.Radioanal. Nucl. Chem.Articles, 1984, 83, p.291.
- Dreyer I, Dreyer R., Chalkin V.A. Radiochem.Radioanal. Letters, 1978, 36, p.389.
- 18. Visser G.W.M., Diemer E.L. Radiochimica Acta, 1983, 33, p.175.
- 19. Миланов М. и др. Препринт ОИЯИ, Р6-86-549, Дубна, 1986.
- 20. Rösch F. et al. J.Chromotogr., 1987, 396, p.43.
- 21. Rösch F. et al. Radiochimica Acta, 1987, 42, p.43.
- 22. Рёш Ф., Чан Ким Хунг, Миланов М., Халкин В.А. ОИЯИ, Р6-87-190, Дубна, 1987.
- 23. Doberenz V. et al. Radiochem.Radioanal.Lett., 1982, 52, p.119.
- 24. Миланов М. и др. ОИЯИ, Р6-81-410, Дубна, 1981.
- 25. Milanov M. et al. J.Radioanal Nucl.Chem.Articles, 1984, 82, p.101.
- Appelman E.H. in MTP Int.Review of science, Inorg.Chem.Ser.,
 1.3, Edit V.Gutmann, Butterworth C.Ltd.London, 1972.

Чан Ким Хунг и др. Исследование электромиграции катиона астата

Электромиграция астата (210 , 211 At) исследована в водных растворах 0,25 моль $^{-1}$ H(Na)Cl04 - 5 \cdot 10⁻³ моль $^{-1}$ K₂Cr₂O₇ или Na₂S₂O₈, 25^OC; 0,7 \leq \leq pH \leq 10,4. Подобно K₂Cr₂O₇, Na₂S₂O₈ окисляет астат только до At(Θ)⁺ - одновалентного катиона, стабилизирующегося в форме протонированной гипоастатной кислоты (H₂O)₁At⁺. Литературные данные об окислении астата Na₂S₂O₈ до At³⁺ (AtO⁺) подтверждения не получили. Средняя подвижность катиона At(Θ)⁺ хорошо описывается эмпирическим уравнением

$$\overline{J} = \frac{u_{At}^{o}(3) +}{(1 + K_{dp} \cdot a_{H}^{-1}) \cdot (1 + \delta \cdot pH)} ,$$

где $K_{dp} = 7,6(3,0) \cdot 10^{-5}$ моль $\cdot n^{-1}$ – константа депротонирования $(H_20)_n At^+;$ $-1ga_{H^+} = pH; \delta = 0,18; u_{At}^{O}(\Theta) + = 3,80(5) \cdot 10^{-4} cm^2 B^{-1} c^{-1}$. В растворах $K_2Cr_2O_7$ с pH > 1,7 и в растворах без реагентов-окислителей At $(\Theta)^+$ неустойчив и восстанавливается до нейтральной формы, по-видиному, At^o.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1988

Tran Kim Hung, Milanov M., Rösch F., Khalkin V.A. 12-88-500 Investigation of Astatine Cation Electromigration

Electromigration of astatine $(2^{10}, 2^{11}At)$ has been investigated in aqueous solutions of 0.25 mole L⁻¹ H(Na)ClO₄ - $5 \cdot 10^{-3}$ mole L⁻¹ K₂Cr₂O₇ or Na₂S₂O₈ at 25°C, $0.7 \le pH \le 10.4$. Like K₂Cr₂O₇, Na₂S₂O₈ oxidizes astatine only to At(Θ)⁺, i.e. to an univalent cation, stabilized in the form of protonized hypoastatine acid (H₂O)_nAt⁺. The literature data on oxidation of astatine by Na₂S₂O₈ to At³⁺(AtO⁺) were not confirmed. The mean mobility of the At(Θ)⁺ cation is well described by the empiric equation

u^oAc (∋)+

$$(1 + K_{dp} \cdot a_{H^{+}}^{-1}) \cdot (1 + \delta \cdot pH)$$

___ u ≖

where $K_{dp} = 7.6(3.0) \cdot 10^{-5}$ mole L⁻¹ is the deprotonation constant of $(H_20)_n At^+$, $\delta = 0.13$; $u^0_{At(\Im)^+} = +3.80(5) \cdot 10^{-4} \text{ cm}^2 \text{V}^{-1}\text{s}^{-1}$. In solutions of $K_2 \text{Cr}_2 0_7$ with pH > 1.7 and in solutions without oxidation agents $At(\Im)^+$ is unstable and re-

pH > 1.7 and in solutions without oxidation agents At(0) is unstable and reduces to the neutral form, probably, At° .

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1988

Рукопись поступила в издательский отдел 7 июля 1988 года. 12-88-500