

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ЛАБОРАТОРИЯ НЕЙТРОННОИ ФИЗИКИ

В.И. Лущиков, Ю.В. Таран

1117

динамическая поляризация протонов в лантан-магниевом двойном нитрате фГл Гл, 1963, TS, E. 1, с 23.3-236. В.И.Лущиков, Ю.В.Таран

1117

ДИНАМИЧЕСКАЯ ПОЛЯРИЗАЦИЯ ПРОТОНОВ В ЛАНТАН-МАГНИЕВОМ ДВОЙНОМ НИТРАТЕ

Дубна 1962 год

Аннотация

Насыщением "запрещенных" переходов ионов Ce^{s+} в монокристалле (Ce, La)₂ $Mg_3(NO_3)_{12} \cdot 24H_2O$ в поле 3700 эрстед и при температуре 1,6[°]K получено 170-кратное увеличение поляризации протонов по сравнению с поляризацией при тепловом равновесии. Измерена зависимость времени протонной спин-решеточной релаксации от температуры (в интервале 1,5[°]-1,7[°] K) и от концентрации церия (в интервале 0,2 - 1%). Настоящая статья излагает результаты экспериментов по динамической поляризации протонов в монокристалле лантан-магниевого двойного нитрата $La_2 Mg_3 (NO_3)_{12} \cdot 24 H_2 O$ с примесью церия **Се**, возникающей при насыщении электронного парамагнитного резонанса (ЭПР) "запрещенных" переходов ионов **Се**³⁺. Метод динамической поляризации ядер (ДПЯ), предложенный Эрбом, Мотчане, Юберсфельдом^{/1/} и, независимо, Абрагамом и Проктором^{/2/}, позволяет в теоретическом пределе увеличить поляризацию ядер в γ_3 / γ_8 -раз

по сравнению с поляризацией при тепловом равновесии (здесь: у₃, у_я - гиромагнитное отношение парамагнитного иона и ядра, соответственно). В частности, для иона Се^{з+}н протона у₃ / у_р = 605.

В пастоящее время в различных лабораториях мира интенсивно ведется работа по созданию мишеней с высокой степенью поляризации протонов. В частности, в Сакле (Франция) Боржини^{/3/} динамическим методом получил поляризацию протонов 19%. Однако создание мишени, пригодной для ядерных исследований, является еще нерешенной задачей, поэтому описание каждой действующей установки и конкретных результатов, полученных на ней, представляет несомненный интерес.

Наша работа является продолжением исследований по динамической поляризации протонов, выполненных ранее на облученном полиэтилене и перекиси третичного бутила¹⁵¹. В качестве образца взят монокристалл $(L_a, C_e)_2 Mg_3 (NO_3)_{12} \cdot 24 H_2 O$ с различной концентрацней атомов церия, изоморфио замещающих диамагнитный лантан. Кристалл двойного нитрата исследовался ранее в работах^{13,4,101}. Образцы выращивались из насыщенного раствора $La_2 Mg_3 (NO_3)_{12}$ с соответствующей добавкой $Ce_2 Mg_3^- (NO_3)_{12}$ при температуре 4⁰C. Для выращивания кристаллов была взята соль лантана, очищенная от примесей других редкоземольшых элементов до 99,99%. Вхождение церия в решетку кристалла не определялось, и концентрация церия в кристалле ориентировочно принимается равной концентрации церия в исходном растворе. Были выращены кристаллы с концентрацией церия $\lambda = 0, 2 - 1$ %. Обычный размер кристалла 15х10х2,5 мм, вес 700 мг. Исследовались также кристаллы весом 70-100 мг, однако размеры кристаллов существенным образом на результатах не отражались.

Эксперименты были выполнены на установке, описанной в работе⁷⁵⁷. Исследуемый образец располагался в резонаторе так, чтобы ось симметрин кристалла z' была всегла перпендикулярна внешнему магнитному полю l_0^{i} (рис. 1). В этом случае g -фактор иона Ce^{3t} равен g_{\perp} =1,83. В резонаторе возбуждались колебания типа H_{102} с частотей v_9 =9440 Мгц. Частота клистронного генератора стабилизировалась относительно собствен-ной частоты резонатора.

Увеличение поляризации протонов в кристалле при насыщении ЭПР определялось по усилению сигнала ядерного магнитного резонаяса протонов (ЯМР). Детектором сигнала ЯМР служила модифицированная автодинная схема изменяющейся частоты с автоматической

3

Рис. 1. Расположение образца с контуром в резонаторе.

подстройкой уровня генерации. При амплитуде генерации 0,025 вольта и угле а между внешним магнитным полем H_0 и ядерным высокочастотным полем H_{13} в пределах $25^{\circ} - 60^{\circ}$ насыщение ядерного резонанса не наблюдалось, и схема с хорошей точностью была линейной. Сигнал ЯМР при модуляции внешнего магнитного поля с частотой 280 гц на глубину 0,8 э записывался после синхронного детектирования на самописец.

В области температур 1,5[°] - 1,7[°]К нами наблюдалось значительное увеличение протонной поляризации и были изучены: 1) зависимость коэффициента усиления протонной поляризации от величины внешнего магнитного поля H при фиксированной частоте ЭПР для различных концентраций λ , 2) зависимость коэффициента усиления от мошности P_c , насыщающей ЭПР, при фиксированном значении H для различных λ , 3) температурная и концентрационная зависимости времени протонной спин-решеточной релаксации T_{re} .

Увеличение поляризации протонов характеризуется коэффициентом динамического усиления η , равного отношению сигнала ЯМР при наличии насыщения ЭПР ионов **Ce**³⁺ к сигналу ЯМР в отсуствие микроволновой мошности, насыщающей ЭПР. Экспериментальная зависимость коэффициента усиления η от поля H при фиксированной частоте клистрона представляет собой типичную картину, наблюдаемую при динамической поляризации: усиление имеет максимальное отрицательное значение η_{-} при $H_{-} = H_{0} - \frac{\Delta H}{2}$ (соответствует переходу с частотой $\nu_{+} + \nu_{+}$), равно нулю при $H = H_{0}$ (разрешенный переход с частотой ν_{-2}) и имеет максимальное положительное значение η_+ при $H_+ = H_{_2} + \frac{\Delta H}{2}$ (соответствует переходу с частотой $\nu_{_3} - \nu_{_{_3}}$). Полученные значения η_+ , η_- и $\Delta H = H_+ - H_$ в зависимости от концентрации церия λ приведены в таблице 1. Напомним, что удвоенная величина сверхтонкого расщепления ЭПР ионов $Ce^{_{_3}+}$ за счет взаимодействия с протонами в поле $H_0 = 3690$ э равна $2g_{_{_3}}\beta_{_3}H_0^{-}/g_{_{ce}}\beta \approx 12$ э.

		T	аблиц	a 1			
λ %	0,2	0,5		0,8		1	
τ°κ	1,57	1,6	1,5	1,67	1,5	1,65	
Δ Η " э	12,7 <u>+</u> 1,0	16,5 <u>+</u> 1,0		-	-	22 <u>+</u> 2	
η	-	158 <u>+</u> 14	-	-	-	70 <u>+</u> 5	
η_+	100 <u>+</u> 10	170 <u>+</u> 15	150 <u>+</u> 14	124 <u>+</u> 12	100 <u>+</u> 10	78 <u>+</u> 6	

б) - сигнал ЯМР после насыщения перехода ν -1'я, К = 1. Динамическое усиление поляризации равно р/р ≈ 170. Кристалл с $\lambda = 0,5\%$ при **Т** = 1,6°К в поле 3700 э дал наибольшее усиление, равное $\eta = p/p_0 \approx 170$ (рис. 2), что соответствует поляризации протонов $p \approx 4\%$ для кристалла весом около 700 мг. Полученный коэффициент усиления в 3,5 раза меньше теоретически возможного значения $/\eta_{\text{теор}} = \gamma_{co}/\gamma_p = 605$, что объясняется неполным разрешением "запрещенных" переходов. Ширина линии ЭПР примерно равна расстоянию между двумя "запрещенными" переходами (т.е. $2g_{g}\beta_{g}H_{0}/g_{co}\beta$). В этих условиях, согласно⁷⁴⁷, следует ожидать $\eta \approx 0.22 \eta_{\text{теор}} = 130$. При понижении температуры до 1,5°К наблюдается небольшое уменьшение $\eta_{\text{макс}}$ (приблизительно на 15-20%). Аналогичное снижение было отмечено Боржини⁷³⁷. Сравнение наших результатов с ранее опубликованными данными сделано в таблице 2. На рис. 3 представлены зависимости η от P_c для $\lambda = 0,5$ и 0,8% при фиксированном значения $H'=H_+$ (добротность резонатора $Q \approx 5000$). Сравнение экспериментальной завысимости η от P_c для $\lambda = 0,5\%$ с простой феноменологической теорией ДПЯ с учетом спиновой диффузии⁷⁴⁷, предсказывающей зависимость

$$\eta = \eta \frac{s_0}{\text{Makc} 2 + s_0} \frac{(1 + s_0/2)^{1/4}}{k + (1 + s_0/2)^{1/4}}$$

где $s_0 = (\gamma H_{13})^2 T_{13} T_{23} \sim P_c$ - параметр насыщения, k - параметр, характеризующий ядерную релаксациончую "утечку", вызываемую посторонними парамагнитными примесями, не участвующими в ДПЯ, дает хорошее согласие при $k = 0.33 \pm 0.03$, $\eta_{\text{Makc}} \approx 184$ и $s_0 \approx 20 P_c / \text{MBT}/ (температура 1.6° K)$.

Вес образца, мг	Концентра- ция церия λ	Темпера- тура Т ⁰ К	Напряжен- ность внеш- него магнит- ного поля, <i>Н</i> , Кэ	Коэффи- циент ди- намическо- го усиле- ния, η	Поляризация протонов, р %	Ссылки на литерату- ру
20	0,5	1,5	13,5	200	19	/3/
700	0,5	1,6	3,7	170	4	Настоящая работа
200	1	1,7	3,6	150	3,2	/4/
-	5	1,6	3,6	60	1,4	/10/

Таблица 2

Мы также изучали переходные явления, имеющие место при внезапном включении и выключении мощности, насыщающей ЭПР. При включении микроволновой мощности рост протонной поляризации идет по экспоненте с постоянной времени или временем поляризации $r_{o_{\rm S}}$, которое зависит от температуры T, кончентрации λ и мощности P_c . При выключении СВЧ мощности разрушение поляризации с хорошей точностью происходит по экспоненте со временем спин-решеточной протонной релаксации $T_{i_{\rm S}}$. Простая теория ДПЯ с учетом спиновой диффузии⁴⁴ предсказывает, что $r_{o_{\rm S}}$ и $T_{i_{\rm S}}$ связаны соотношением

Рис. 3. Зависимость динамического усиления от мощности P_c , насыщающей ЭПР, при $1,6^{\circ}$ К и $Q \approx 5000$.

 $r_{o,\pi} / T_{I,\pi} = (k+1)/[k+(1+s_o/2)^{5/4}]$ где k - указанный выше параметр. Используя значение $k = 0.33\pm0.03$ из зависимости η от P_c , найдем, что для $\lambda = 0.5\% r_{o,\pi} / T_{I,\pi} = 0.32\pm0.02$ при $s_o \approx 440$ (такое значение параметра насыщения соответствует $P_c = 20$ мвт). Эксперимент дает значение $r_{o,\pi} / T_{I,\pi} = 0.35\pm0.03$.

Измерения T_{19} в кристаллах с различной концентрацией церия λ в области температур 1,5-1,7°К показали, что: а) при постоянной температуре концентрационная зависимость $T_{19}^{-1} \sim \lambda^{1,1\pm0,2}$ в диапазоне λ от 0,2% до 1% **Се³⁺** согласуется с теорией спиновой диффузии^(4,6), предсказывающей $T_{19}^{-1} \sim \lambda$; б) для всех изученных концентрацией церия температурная зависимость есть $T_{19}^{-1} \sim T^{4\pm1}$ в частности, для $\lambda = 0,5\%$ $T_{19} = (1,70\pm0,15) \cdot 10^3$ $T^{-(4\pm0,5)}$ сек.

Для сравнения этих экспериментальных данных с теорией ^{/4,6/}, необходимо знать температурную зависимость времени электронной спин-решеточной релаксации T_{19} . Если использовать значения T_{19} , определенные в работах ^{/7-9/}, температурная зависимость T_{19} в области $1,7^{\circ}-1,5^{\circ}$ К может быть представлена в виде $T_{19}^{-1} \sim T^{-3}$. В этом случае следует ожидать для времени протонной релаксации зависимость $T_{19}^{-1} \sim T_{19}^{-4} \sim T^{-4}$, что не

7

согласуется с нашими данными. Отметим, что Боржини T_{I3}^{-1} получил $T_{I3}^{-1} \sim T^2$ от 1,5° до 2,1°К, а Джеффрис и Ляйфсон $T_{I3}^{-1} \sim T^2$ в области температур 1,6-2,4°К. Причина такого расхождения остается неясной.

Авторы выражают благодарность доктору физико-математических наук Ф.Л. Шапиро за внимание и интерес к работе, кандидату физико-математических наук А.А. Маненкову, оказавшему существенную помощь в успешном проведения экспериментов, В.Я. Хаимову-Малькову за предоставление кристаллов и А.В. Кессениху за участие в некоторых измерениях.

Литература

- 1. E. Erb, I.L. Motchane, I.Uebersfeld, Compt. rend., 246, 2121 (1958).
- 2. A.Abragam, W.G.Proctor, Compt. rend. 246, 2253 (1958).
- 3. M.Borghini, Proceedings of the 7 th International Conference on Low Temperature Physics, University of Toronto Press - Horth Holland, P. 152 (1961).
- 4. O.S.Leifson, C.D.Jeffries, Phys. Rev. 122, 1781 (1961).
- 5. В.И.Лушиков, А.А. Манеяков, Ю.В. Таран. ФТТ, <u>3</u>, 3503 (1961). Преприят Д-7-60, Дубиа (1961); преприят Р-831, Дубиа (1961).
- 6. Г.Р. Хуцишкили. Труды института физики АН Гр.ССР, 4, 3 (1956).
- 7. C.B.P.Finn, R.Orbach, W.P.Wobf, Proc. Phys. Soc, 77, 261 (1961).
- 8. J.A.Cowen, D.E.Kaplan, Phys. Rev. 124, 1098 (1961).
- 9. R.H.Ruby, H.Benoit, C.D.Jeffries, Technical Report N= 10, University of California, Berkeley (1962); Abstract Phys. Rev.

Lett, 8, N = 9 (1962).

10. M.Abraham, M.A.H McCousland, F N H.Robinson, Phys. Rev. Lett, 2, 449 (1959).

Рукопись поступила в издательский отдел 27 октября 1962 года,