H- 626

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Million and

Дубна

11 - 4027

24/2 68

Н.М.Никитюк

1968

ПРОСТЕЙШИЕ ИМПУЛЬСНО-ПОТЕНЦИАЛЬНЫЕ СХЕМЫ НА ТВЕРДЫХ ИНТЕГРАЛЬНЫХ МОДУЛЯХ ТИПА И-НЕ

11 - 4027

Н. М. Никитюк

4540/2 mg.

ПРОСТЕЙШИЕ ИМПУЛЬСНО-ПОТЕНЦИАЛЬНЫЕ СХЕМЫ НА ТВЕРДЫХ ИНТЕГРАЛЬНЫХ МОДУЛЯХ ТИПА И-НЕ

Направлено в ГОСИНТИ

Объединенный институт висрама меснедований БИБЛИСТЕКА Схемы, построенные целиком на потенциальных модулях типа И-НЕ, позволяют полностью реализовать частотные свойства и высокую надежность модулей. Однако такие схемы зачастую получаются неэкономичными. Например, для построения триггера со счетным входом на потенциальных модулях типа И-ИЕ необходимо, по крайней мере, 6 таких элементов. Применение импульсных связей между модулями позволяет строить более экономичные схемы, хотя и приводит к уменьшению рабочей частоты. Ниже приводится описание нескольких таких схем.

1. Базовый модуль

В качестве базового модуля для построения схем была использована схема диодно-транзисторного логического модуля, изображенного на рис.1. Величина задержки г на каскад составляет 50+60 исек. Наличие высокого уровня (+5 в) соответствует логической единице, а наличие низкого уровня (около 0 в) – логическому нулю. Таким образом, данный элемент выполняет функцию F = ABC (И-ИЕ) для высоких уровней напряжения и функцию F = Ā+Ē+C для низких уровней.

^уис.1. а) Принципиальная схема диодно-транзисторного логического модуля. б) Функциональная схема.

II . Элемент задержки

Крутой отрицательный фронт импульсов, получаемый на выходе модуля (50+60 нсек), хорошо дифференцируется в широких пределах, и поэтому схема, показанная на рис.2, может быть использована в качестве элемента задержки. Емкость подсоединяется непосредственно к базе (вывод 1) входного транзистора. Длительность выходного продифференцированного импульса ¹ зависит от величины емкости ^С и может иметь величину ¹ =80+5000 нсек при изменении емкости от 517 ф до 5100 пф.

III . Генераторы импульсов

1. Мультивибратор на 4-х модулях. Если осуществить связи между модулями, как это показано на рис.3, то получим генератор импульсов. При отключении емкостей С₁ и С₂ получается максимальная частота генерируемых импульсов, которая для данного типа модулей составляет 5 Мгц.

2. Мультивибратор на 2-х модулях. Более экономичная схема мультивибратора получается, если емкости и модули соединить по классической схеме (рис.4). Однако рабочая частота генерируемых импульсов не превосходит 300 кгц.

3. Генератор пачек импульсов

Часто при наладке счетчиков, регистров сдвига и более сложных схем необходимо иметь генератор пачек импульсов. Схема генератора пачек импульсов приведена на рис.5. Она состоит из мультивибратора и цепочки элементов задержки.

Рис.2. Элемент задержки.

Рис.3. Мультивибратор на 4-х модулях.

Рис.4. Мультивибратор на 2-х модулях.

Рис.5. Генератор пачек импульсов.

4. Генератор пачек импульсов

Для получения большого количества импульсов в пачке (несколько десятков) более приемлема схема генератора, изображенного на рис.6. Эта схема состоит из двух мультивибраторов. Мультивибратор I работает в автоколебательном режиме и задает частоту повторения пачек импульсов. Мультивибратор II работает в ждущем режиме и запускается мультивибратором II . Количество импульсов в пачке определяется величинами емкостей С , С₁ и С₂. На выходе модуля III выделяется одиночный импульс.

Рис.6. Генератор пачек импульсов.

IV. Триггеры

Построение триггера без счетного входа (с двумя входами) на элементах типа И-ИЕ не представляет труда. Такой триггер, как известно, состоит из двух модулей типа И-ИЕ с взаимно-обратными связями.

1. Триггер со счетным входом на 6 модулях

Рассмотрим кратко работу триггера, изображенного на рис.7 /1/. Предполагается, что наличие отрицательного уровня соответствует логической единице, а присутствие положительного - логическому нулю. В исходном (нулевом) состоянии на выходе модуля 6 - высокий уровень напряжения (+) (единичный выход), а на выходе модуля 4 - низкий уровень напряжения (-). В скобках на схеме указаны знаки уровней на входах и выходах модулей, когда триггер находится в нулевом положении. На счетном входе триггера (модули 3 в 4) установлен высокий уровень. При поступлении на счетный вход отрицательного перепада напряжения через время, равное времени задержки сигнала на один каскад, на выходе модуля 4 появится положительный перепад (см. схему на рис.1а) и выход модуля 3 в течение этого времени останется без изменения. Через время, равное 27 , могут изменять свое состояние модули 2,3,6, так как они связаны с выходом модуля 4. Выход модуля 2 принимает значение 0, так как выход модуля 1 имеет значение 1. Выход модуля 3 не меняет своего значения, оставаясь нулевым, поскольку не меняется входной сигнал, равный единице. Выход модуля 6 изменяет свое значение, поскольку в течение рассматриваемого интервала на его вход поступает нулевой сигнал с выхода модуля 5. Таким образом, после снятия счетного импульса триггер перебрасывается в единичное состояние. Как видно из схемы, следующий счетный импульс вызовет из-

Рис.7. Триггер со счетным входом на 6 модулях.

менение модуля 3, так как на остальных его двух входах в единичном состоянии установлены положительные уровни и далее схема триггера перебрасывается в нулевое состояние и т.д.

2. Триггер со счетным входом на 2-х модулях

Более экономичная схема триггера со счетным входом, состоящая из 2-х модулей, приведена на рис.8. Ее структура соответствует структуре схемы классического триггера. При указанных значениях емкостей частота переключения такого триггера составляет 1 Мгл, т.е. значительно ниже чем из триггера с потенциальными связями.

Рис.8. Триггер со счетным входом на 2-х модулях.

V. Ячейка сдвига

Ячейка сдвига (рис.9) состоит из триггера типа S-R, двух инверторов (модули II и IV), элемента задержки III и блока индикации БИ. Работает ячейка сдвига следующим образом. В исходное (нулевое) состояние триггер устанавливается импульсом отрицательной полярности, поступающим на вывод З. При этом, если в триггере была записана 1, то на входах выводов 2,3 и 4 будет высокий уровень напряжения. При поступлении импульса сброс левый на схеме модуль триггера сработает как сборка и на его выходе установится высокий уровень, а на выходе правого модуля триггера установится низкий уровень напря-

жения (на выводе 3 уст. "1" также высокий уровень). Импульсом, поступающим на вывод 3 уст. "1", триггер устанавливается в "1". При поступлении импульса "сдвиг" отрицательный перепад напряжения с выхода модуля II продифференцируется элементом задержки III и после инвертирования поступит на вход следующей ячейки.

Рис.9. Ячейка сдвига.

VI. Блок индикации

Для визуальной индикации состояния модулей можно применить миниатюрные лампочки накаливания, выпускаемые промышленностью. Была применена лампочка накаливания типа НСМ 6,3 x 20. Принципиальная схема блока индикации приведена на рис.10. Схема состоит из 2-х составных транзисторов П10. Лампочка включена в цепь эмиттера второго транзистора. Как видно, схема не содержит дополнительных пас-

сивных элементов. База входного транзистора подключается к выходу модуля и, если на выходе модуля высокий уровень напряжения, то лампочка загорается.

Рис.10. Блок индикации.

Литература

 Zissos D.A. Step-by-step design of two-way binary counter. "Electron Eng. ", 1965, <u>37</u> N447, p.311-315.

> Рукопись поступила в издательский отдел 9 августа 1968 года.