

20

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория высоких энергий

Ю.К. Пилипенко

1092

РАСПРЕДЕЛЕНИЕ ПРИМЕСЕЙ В ВОДОРОДНОЙ ЧАСТИ ОЖИЖИТЕЛЬНОЙ УСТАНОВКИ ВГО 1

Ю.К. Пилипенко

РАСПРЕДЕЛЕНИЕ ПРИМЕСЕЙ В ВОДОРОДНОЙ ЧАСТИ ОЖИЖИТЕЛЬНОЙ УСТАНОВКИ ВГО 1

20

6331

ибъединенный инсл ядерных исследований БИБЛИОТЕКА

х/ Работа докладывалась на 1Х Всесоюзном совещании по физике низких температур. Ленинград 1962г.

Переход к ожижителям большой производительности, удлинение сроков их кампаний приводит к значительным накоплениям твердых примесей в ожижителе. Кислород, накапливаемый в аппарате, создает оцасность взрыва установки. Имеются данные /1/, указывающие, что причиной взрывов нескольких водородных ожижительных установок явились электростатические заряды, возникающие на кристалах твердого кислорода. Кроме того накопление примесей нарушает нормальную работу, вызывая забивку теплообменной аппаратуры. Поэтому для обеспечения надежной и безопасной работы установки необходимо добиваться увеличения чистоты ожижаемого водорода, изучив вопрос распределения примесей в различных точках холодильного цикла.

Настоящая работа по определению содержания кислорода и суммы примесей / $N_2 + O_2 r$ в водороде проведена на водородной части ожижительной установки BFO1.^{x/}

Примеси поступают в установку следующими путями:

1. С водородом, поступающим на ожижение, взамен выведенной жидкости.

2. Вследствие загрязнения водорода при сжатии в компрессоре.

3. Из-за диффузии воздуха через масляный затвор газгольдера.

Удаление примесей из установки происходит одновременно со сливом жидкого водорода. Кислород, кроме того, удаляется путем сжигания на катализаторе.

Обследуемая установка состоит из следующего оборудования /рис. 1/:

а/ водородная часть ожижителя ВГО1;

б/ компрессор 2PГ 3/350;

в/ блок маслоочистки, включающий в себя палладиевый катализатор /130 л/;

г/ блок очистки водорода БОВ, производительностью 50 м³/час:

д/ газгольдер с масляным затвором емкостью 6 м³.

Анализы производились с помощью следующих газоанализаторов:

1. Непрерывного газоанализатора на сумму примесей по теплопроводности ^{/2/} имеющего чувствительность до 5.10⁻³ молярной доля.

2. Периодического анализатора на сумму примесей адсорбционного типа МКЗ с чувствительностью до 10⁻⁹.

3. Анализатора на кислород АКШ /4/ с пределом чувствительности до 10⁻⁹.

х/ Водородная часть ВГОІ, если она используется в виде самостоятельной установки, именуется ВОІ.

xx/ Все данные в работе приводятся в молярных долях.

Все примеси, вымерзающие до температуры жидкого азота / H₂O, CO₂, масло и др./, оседали в ловушке, установленной перед анализаторами и поэтому не замерялись.

Обследование может быть разделено на два этапа. Первый этап относится к периоду наладки установки. Второй этап соответствует нормальной работе установки со сливом жидкого водорода.

Во время первого этапа установка работала с малым блоком очистки /типа ВОС, ГС/, Результаты анализов представлены в таблице № 1.

Как видно из таблицы, водород, поступающий в ожижитель, ~ в 10 раз грязнее водорода после блока очистки, т.е. газ мог загрязниться только в компрессоре и газгольдере.

Было установлено, что компрессор 2РГ-3/350 дает загрязнение водорода, эквивалентное подсосу воздуха 1 - 2 л/час. Методически это удалось определить по среднему накоплению примесей в известном количестве циркулирующего водорода за определенный промежуток времени. Основной причиной подсоса являются мгновенные разрежения, возникающие в бустерных полостях компрессора, из-за узких щелевых каналов, связывающих бустер-полость со всасывающим патрубком.

После проверки и уплотнения фланцевых соединений компрессора подсос исчез и обнаружить загрязнение водорода по вышеприведенной методике не удалось.

Второй возможный источник загрязнений водорода - газгольдер был заполнен до уровня Зм³ испарившимся из дюара водородом, который периодически подвергался анализу. Было установлено, что загрязнение водорода в газгольдере пои статическом режиме составляет 5.10⁻³ - 10⁻² л/час.

Во время второго этапа ожижитель работал ежедневно по 10-12 часов, а затем отсекался от системы и естественно отеплялся до температур 100-120°К. Примеси, накопившиеся в ожижителе во время работы, выпаривались при отеплении в специальный газгольдер. Оставшиеся в ожижителе примеси удалялись продувкой водорода из системы. После этого установка запускалась вновь. Обследование проводилось в течение 12 рабочих кампаний, причем анализы, на основе которых составлены средние данные, относятся к 4 - 12 кампаниям. Таким образом была исключена возможность получения неверных результатов анализов из-за наличия примесей в различных тупиковых участках трубопроводов. Опыт показывает, что если установка длительное время не работает, то водород системы загрязняется и в первые две-три кампании в ожижителе накапливается несколько большее количество примесей.

В таблице 2 представлены средние и крайние результаты замеров, полученных в период второго этапа.

Из таблиц 1 и 2 видно, что концентрация примесей в водороде, поступающем на ожижение, и сливаемой жидкости примерно равны. В это же время водород обратного потока и после блока очистки гораздо чище, чем после компрессора, т.е. компрессор в меньшей степени, чем вначале, но все же загрязняет водород в количестве 0,3 л/час.

Для выяснения места накопления примесей в ожижителе результаты анализов водо-

рода до и после ожижителя нанесены на кривые равновесия $N_2 - H_2^{5/}$ /рис. 2/. Из графика видно, что во всех наших случаях концентрация примесей в водороде высокого давлония гораздо меньше равновесной и поэтому отложения примесей в линии высокого давления не должны иметь места. После дросселирования водорода равновесная концентрация примесей резко снижается, что приводит к образованию суспензий и отложению твердых кристаллов. Часть из выпавших в аппарате твердых примесей выносится со сливаемой жидкостью, а часть уносится в обратный поток. В случае, если водород, поступающий в ожижитель, грязнее, унос примесей обратным потоком возрастает.

Для большей наглядности результатов обследования произведен расчет баланса примесей на основе средних значений анализов. В расчете принята длительность кампании 12 часов, производительность компрессора 143 м³/час.

N₂	Пути поступления	Σ прим, (N ₂	Σ прим, ($N_2 + O_2$)		юрод	
	примесей	%	нсм ^{.3}	%	HCM ³	Примечание
1.	С обрат.потоком из ожижителя [Σ пр.=0,32.10 ⁻⁶ ; 0 ₂ =2	9,7 9,18.10 ⁸]	416	7,1	28,3	
2.	С водородом пос блока очистки [∑пр. <i>=0,37.10⁻⁶;0</i>	ле 3,6 0 ₂ = 5,7.10 ⁻⁸]	155	6,0	23,9	Примеси, вносимы в компрессор
3.	Загрязнение в газ гольдере	3- 2,9	125	6,6	26,2	и БМО
4,	Загрязнение в кол прессоре	м- 83,8	35 80	80,3	321,6	_
1.	Кислород, сжигае на палладиевом к тализаторе	мый 7,4 а-	316	78,9	315,7	Примеси, выно- симые из
2. [Σ ₁	Поступающие в ожижитель пр.=2,3.10 ⁻⁶ ,0 ₂ =4,9.10 ⁻⁸]	92,6	3960	21,1	84,3	компрессора и БМО

Баланс примесей компрессора и блока маслоочистки

Из материального баланса видно, что палладиевый катализатор работает недостаточно эффективно, оставляя в водороде свыше 20% 0₂ .

Возможно, активность катализатора можно повысить, если реактор будет работать с подогревом. Известно ^{/6/}, что лучшие результаты достагаются при использовании хромоникелевого катализатора.

Баланс	примесей	ожижителя
the state of the s	the second s	

N₂	Наименование	Σ прим. (N ₂ + O ₂)		Кисл	Кислород	
	примесей	%	нсм ³	%	псм.3	
1.	Вносимые с сжат. !! [Σ_{np} 2,3.10 ⁶ ; O_2 4,9.10 ⁸]	100	3960	100	84,3	
ì. [Выносимые с обрат- ным ^H ₂ ∑ _{пр.} =0,32.10 ⁻⁶ ;0 ₂ =2,18.10 ⁻⁸]	10,5	416	8 3,6	28,3	
2.	Выносимые со слив. жидким И ₂ [∑ _{пр} 1,54.10 ⁻⁶ ;0 ₂ = 5,3.10 ⁻⁸]	16,4	647	26,3	22,2	
3.	Накапливаемые в ожижителе	73,1	2897	40,1	33,8	

Приведенные выше расчеты показывают, что количество примесей, вносимых с водородом после блока очистки, гораздо меньше, чем количество примесей, выносимых со сливаемой жидкостью.

Если основное загрязнение производится компрессором, как это имело место в обследуемой установке, режим работы с выдачей жидкости без возврата газа от потребителя является более легким.

Выводы

Основное загрязнение водорода происходит в компрессоре и составляет 0,3 л/час.
Поэтому требуется контролировать работу компрессора в каждом случае отдельно.

2. Содержание примесей в водороде после блока очистки равно 4.10⁻⁶ - 4.10⁻⁷ и зависит от чистоты водорода, заполняющего адсорбер до начала работы.

3. В ожижителе накапливается около 75% всех поступающих примесей и 40% кислорода при чистоте поступающего водорода 2.10⁻⁶ примесей.

4. Концентрация примесей в поступающем на ожижение водороде и в сливаемой жидкости примерно равны.

В заключение автор выражает благодарность Зельдовичу А.Г. за ценные советы и плодотворные обсуждения работы, Котовой Л.С. Писаревой М.Г., Максимовой Т.К., Рубиной О.Г. за помощь в проведении анализов, Баландикову Н.И. и всему эксплуатационному персоналу криогенного отдела, обеспечившим бесперебойную работу установки в период обследования.

1. Дентон, Шоу, Уорд. Очистка газов перед ректификацией. Сборник статей "Вопросы глубокого охлаждения" под редакцией М.П. Малкова. ИИЛ 1961 г, 111.

2. Д.И. Васильев, А.И. Шальников. ПТЭ, № 4, 106 /1958/.

3. К.Н. Зиновьева. Заводская лаборатория. 21, № 1, 30 /1955/..

4. Ю.В. Шарвин, В.П. Андрианов, Е.А. Шарова. Заводская лаборатория, № 7 /1955/.

5. Дентон, Шоу, Уорд. Очистка газов перед ректификацией. Сборник статей "Вопросы глубокого охлаждения" под редакцией М.П. Малкова. ИИЛ, 1961, 101.

6. Г.К. Боресков, М.Г. Слинько. Хим.пром. № 2,5 /1956/.

Рукопись поступила в издательский отдел

20 сентября 1962 года.

Таблица 1

/рис.	Точка отбора Точки 1/ анализа	Σ примесей в молярных долях	Примечание
1.	После блока маслоочистки	$1,3 \cdot 10^{-4} - 3.10^{-5}$	Количество примесой постепенно сняжа- лось после начала ожижения.
2.	После ожижителя	$3.10^{-5} - 3.5.10^{-6}$	
3.	После блока очистки	~ 4 . 10 ⁻⁶	Регенерация блока велась с откачкой и подогревом. После тренировки блок #а- полнялся водородом чистотой 10-3-10-4
4.	Сливаемый жидкий водород	$\sim 3 \cdot 10^{-5}$	молярной доли.

Таблица 2

⊯ точк	и Точка отбора анализа	∑ примесей в молекулярных долях		0, в моляр долях	оных Примечание
/рис. 1/		среднее	предельные	среднее	предельные
I.	После блока масло- очистки /БМО/	2,3.10 ⁻⁶	1,23 . 10 ⁻⁶ 3,67	4,9.10 ⁻⁸	I,44 . 10 ⁻⁸ 8,1
2.	После ожижителя	0,32 . 10 ⁻⁶	0,17 . 10 ⁻⁶ 0,53	2,18 . 10 ⁻⁸	0,72 . 10 ⁻⁸ 4,58
3.	После блока очистки	0,37 . 10 ⁻⁶	0,25 . 10 ⁻⁶ 0,54	5,7 . 10 ⁻⁸	0,9.10 ⁻⁸ 8,8 Блок очистки ре- генерировался го- рячим азотом Т=100-150°С с последующей про- дувкой 1000-1200л H ₂ чистотой 10 ⁻⁵ - 5.10 ⁻⁶ .
4.	Перед блоком масло- очистки /БМО/.			2,32.10-7	1,97 . 10 ⁻⁷ 3,0
5.	Сливаемый жидкий H ₂	1,54 . 10 ⁻⁶	0,72 .10 ⁻⁶ 3,78	5,3 . 10 ⁻⁸	0,36 . 10 ⁻⁸ 13,5

Рис. і. Блок-схема водородной части ожижительной установки ВГОІ.

- а) Водородная часть ожижителя ВГО1.
- б) Компрессор 2PГ-3/350.
- в) Блок маслоочистки БМО.
- г) Блок очистки водорода БОВ.
- д) Газгольдер с масляным затвором емкостью 6 м³.

Рис. 2.

Кривые фазового равновесия системы $N_2 - H_2$ и значения концентраций примесей до ожижителя /отнесенные к температуре перед дроссельным вентилем 41° K/ и после ожижителя /отжесенные к температуре водорода в сборнике 20,5 K/.

1,2 -содержание суммы примесей до и после ожижителя во время первого этапа; 3,4 - то же для второго этапа; и

5,6 - срдержание кислорода для второго этапа.