9633 сообщения объединенн

ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

C344. In

5-20

2747/2-76

А.М.Балагуров, В.Д.Шибаев

19/v1176

ДИФРАКЦИОННЫЕ ИЗМЕРЕНИЯ
ПО МЕТОДУ ВРЕМЕНИ ПРОЛЕТА
С ИСПОЛЬЗОВАНИЕМ ПЕРЕМЕННОЙ
ШИРИНЫ КАНАЛА

1976

А.М.Балагуров, В.Д.Шибаев

ДИФРАКЦИОННЫЕ ИЗМЕРЕНИЯ
ПО МЕТОДУ ВРЕМЕНИ ПРОЛЕТА
С ИСПОЛЬЗОВАНИЕМ ПЕРЕМЕННОЙ
ШИРИНЫ КАНАЛА

1. Введение

В нейтронных дифракционных экспериментах по методу времени пролета анализ спектров обычно ведется анализаторами с постоянной шириной временного канала /1/. При выборе ширины каналы зачастую приходится идти на компромисс между двумя условиями: спектр должен уместиться в ограниченное число каналов анализатора и, с другой стороны, ширина канала должна быть достаточно мала, чтобы не ухудшать временное разрешение. Известным способом экономии памяти анализатора является разбиение ее на группы с различной шириной канала. Недостатком этого способа является кусочный характер спектров, что затрудняет их наблюдение и обработку, особенно при необходимости частой смены границ групп.

В работе /2/ высказывалась идея об использовании для наблюдения дифракционных спектров временного анализатора с переменной, изменяющейся по определенному аналитическому закону, шириной канала. В силу некоторых особенностей дифракционные спектры являются удобным объектом для применения к ним подобного способа наблюдения. Положения дифракционных максимумов на временной шкале определяются простым и, в то же время, строгим законом. Для дифракционных максимумов от одной кристаллографической плоскости справедливо

$$t_k = t_m / k, \qquad /1/$$

 t_k - положение k -го максимума, t_m - константа, определяемая свойствами кристалла и экспериментальными условиями.

Строгость соотношения /1/ позволяет легко идентифицировать дифракционные максимумы, несмотря на неизбежные отклонения реального закона изменения ширины канала от предполагаемого.

Использование постоянной ширины канала приводит к тому, что расстояния между максимума, а также их ширины при больших временах пролета становятся чрезмерно большими. Так, для монокристаллов расстояние между максимумами растет как \mathbf{t}_k^2 , а ширина максимума пропорциональне \mathbf{t}_k .

При анализе кристаллов с большими параметрами элементарной ячейки диапазон изменений к может составлять несколько десятков, соответственно во столько же раз будут меняться ширины максимумов, а расстояния между ними будут меняться в несколько тысяч раз.

Использование растущей со временем ширины канала позволяет значительно уменьшить диапазоны изменения ширин максимумов и расстояний между ними.

В настолисы работе описывается реализация этой идеи для закона изменения ширины канала

$$r(t) = t/\beta, /2/$$

где β - выбираемая экспериментором константа.

2. Основные соотношения

Из соотношения между дифференциалами числа каналов и времени

$$dN = dt/\bar{z}(t)$$
 /3/

следует зависимость номера канала от момента времени

$$N(t) = \int_{t_1}^{t} \frac{d\xi}{r(\xi)}, \qquad /4/$$

 t_1 - время начала наблюдения. Для закона /2/ Из /5/ легко получить основные характеристики спектра - ширину максимумов и расстояния между ними. На рис. І приведены зависимости ширины максимума от времени для обычного метода, когда

Puc.~1.~3ависимость ширины дифракционного максимума от времени . 1 - для $\tau(t)$ - const = τ_0 . 2 - для $\tau(t)$ - t/β .

 $\tau(t) = const = \tau_0$

и для закона /2/, а на $puc.\ 2$ схематически показано заполнение памяти анализатора/положения пиков/ для этих двух случаев. Параметры t_m , τ_0 , β , t_1 при расчетах примерио соответствовали реальному эксперименту, описанному ниже. Из рисунков видно, что использование закона /2/ приводит к существенной/в несколько раз/ экономии памяти анализатора и к стабилизации ширины дифракционных максимумов вдоль спектра.

Рис. 2. Заполнение памяти анализатора; вверху для $\tau(t) = \tau_0$, внизу - для $\tau(t) = t/\beta$. Параметры при расчете выбраны так, что положения 10-х максимумов и интервал между 9-м и 10-м максимумами совпадают для обоих случаев.

Отметим еще, что зависимость ширины канала от номера канала для закона /2/ является экспоненциальной

$$r(N) = r_1 \cdot \exp(N/\beta), \qquad \qquad /6/$$

где $r_1 = t_1/\beta$ - начальная ширина канала. Поэтому постоянные во времени функции /например, фон/ превратятся в экспоненциальные функции номера канала.

3. Экспериментальная проверка

В Лаборатории нейтронной физики был разработан временной кодировщик $^{/3/}$ с переменной шириной канала /ВКПШК/, изменяющейся по закону /2/. Перед измерением реальных дифракционных спектров была проведена проверка работы этого кодировщика с помощью

используемого в Измерительном центре ЛНФ кодировщика с постоянной шириной канала ВК-5/4/. В качестве источника стартового и детекторного сигналов использовался генератор импульсов Г5-15.

Соответствие положений детекторных импульсов по каналам проверялось на основании формулы

$$N_{L} = \beta \ln \frac{T_{1} + \tau_{0} \cdot N_{c}}{\beta \cdot \dot{\tau}_{1}}, \qquad /7/$$

где N_L - номер канала при анализе с помощью кодировщика ВКПШК, N_c - номер канала при анализе с помощью кодировщика ВК-5, T_1 - задержка начала измерения, набранная на кодировщике ВК-5.

В табл. 1 приведены экспериментальные значения N_c и N_L и расчет N_L по /7/ при некоторых наборах T_1 , β , r_1 . Соответствие экспериментальных и расчетных значений N_L лучше 1%.

Таблица 1 Проверка кодировщика с генератором*

Набор параметров	N _c	Число отсчетов	Ne	N _L	Число Вотврото	N _L	расчет	ло (7)
$T_1 = 400$				106	1278			
$ \tau_c = 4 \tau_i = 4 \beta = 100 $	191	1420	191	107	373	106,2	106,8	
$T_I = 400$				94	1856		_	
τ ₀ = 4 τ ₁ = 4 β = 100	157	1311	I57	95	673	94,4	94,4	
$T_{I} = 320$ $\tau_{c} = 4$	177	1815		93	I527	~~~		
7, = 4 $3 = 80$	178	123	171.	1 94	454	93,2	93,3	

^{*}Временные параметры в мкс.

Для получения реальных дифракционных спектров использовался дейтерированный монокристалл двойного пантан-магниевого нитрата $\operatorname{La_2Mg_3(NO_3)_{12}} 24\operatorname{D_2(1)}$. Наблюдалась дифракция от плоскости $(00\,\ell)$ с межплоскостным расстоянием $d=34,5\,\mathrm{A}$, что позволяло получать до 13 максимумов одновременно. Эксперимент проводился на реакторе ИБР-3О ЛНФ ОИЯИ на пролетной базе 57 м. Спектр, снятый со стандартным кодировщиком ВК-5, приведен на рис. 3, а спехтры, снятые с кодировщиком ВКПШК, на рис. 4 и 5. Набор проводился параллельно на двух анализаторах.

Из особенностей представленных спектров можно отметить улучшение условий наблюдения начального участка при использовании больших β /спектр на puc.4/ и значительное сокращение числа каналов, необходимых для наблюдения, при уменьшении β /спектр на puc.5/.

Для того, чтобы уместить в памяти анализатора все наблюдаемые максимумы, начиная с 3-го порядка, потребовалось бы около 7200 каналов при обычном методе и только 1600 каналов /в 4,5 раза меньше/ при использовании ВКПШК с β = 500.

Для проверки выполнимости зависимости /5/ производилась обработка положений пиков по МНК. Свободными параметрами являлись \mathbf{t}_{m} - положение первого максимума и \mathbf{t}_{0} - задержка вспышки реактора относительно запуска анализатора. При этом положение k -го максимума при обычном анализе

$$N_k = \frac{t_m/k + t_0}{\tau_0} , \qquad /8/$$

а для ВКПШК

$$N_{k} = \beta \ln \frac{t_{m}/k + t_{0}}{\beta \cdot r_{1}} .$$
 /9/

Экспериментальные положения пиков определялись по максимуму счета с ошибкой ± 1 канал.

Рис. 3. Дифракционный спектр, снятый с кодировщиком ВК-5 при $\tau_0 = 32$ мкс.

Puc.~4.~ Дифракционный спектр, снятый с кодировщиком $BK\Pi IIIK$, при $r_1=14$ мкс, $\beta=930$.

Puc. 5. Дифракционный спектр, снятый с кодировщиком ВКПШК, при τ_1 = 20 мкс, β =500.

Таблица 2 Экспериментальные и вычисленные положения максимумов при использовании ВК-5

К	√ экс.	√ ∘уч.	√экс	№ Выч.
4	I8I6	1816,0	0,0	
5	I454	I 453 , 8	0,2	
6	1212	1212,4	0,4	
7	IO40	I 040,0	0,0	
8	911	910,6	0,4	
9	810	810,0	0,0	
IO	729	729,6	0,6	
II	664	663,7	0,3	
I2	609	608,8	0,2	
I 3	562	562,4	0,4	
I 4	523	522,6	0,4	
I 5	488	488,I	0,1	
16	458	457,9	0,1	

Таблица 3
Экспериментальные и вычисленные положения максимумов при использовании ВКПШК

к	√экс.	√выч.	√ экс √ выч.	1
4	I 389	I389 , 0	0,0	
5	II82	II82,I	0,1	
6	1013	1013,2	0,2	
7	870	870,4	0,4	
8	747	746,9	0,1	
9	638	638,0	0,0	
IO	54I	540,6	0,4	
II	453	452,6	0,4	
12	373	372 , 3	0,7	
13	298	298,5	0, 5	
I 4	231	230,2	0,8	
I 5	I 66	1 66 , 7	0,7	
16	I 07	107,3	0,3	

Результаты обработки, относящиеся к спектрам, изображенным на рис. З и 4, приведены в табл. 2 и 3, соответственно, а значения параметров, определенных по МНК, в табл. 4.

Физический параметр t для обоих кодировщиков совпадает с точностью 0.2%.

Таблица 4 Значения параметров

	BK-5	вкпшк	вкпшк
t _m /32 мкс	7243 <u>+</u> 10	7227 <u>+</u> 10	7243
t ₀ /32 мкс	5,3 <u>+</u> 0,2	4,9 ± 0,6	3,6 ± 0,2
$\sqrt{\chi^2/(n-m)}$	0,32	0,47	0,89

Кроме того, спектр от ВКПШК обрабатывался с фиксированным значением параметра t_m , которое находилось из спектра от ВК-5. Результат приведен в последней колонке табл. 4. Представленные результаты говорят о том, что значения моментов времени, определяемых с помощью ВКПШК, соответствуют ожидаемым в пределах предполагаемой ошибки.

4. Заключение

В настоящей работе рассматривалось использование растущей со временем ширины канала для регистрации дифракционных спектров и было показано, что такой способ регистрации позволяет существенно экономить память анализатора, не ухудшая условий анализа и точности результатов.

Очевидно, что это справедливо для любого эксперимента по времени пролета, в котором временная неопределенность Λt постоянна вдоль спектра. Тогда использование $r(t) \sim t$ приведет к постоянству условий

наблюдения: $\Delta t/t = \mathrm{const}$ вдоль спектра при сокращении необходимого объема памяти.

Не исключено использование других законов изменения ширины канала во времени. Не вдаваясь в детальный анализ, отметим, что использование закона $\tau(t) \sim t^2$ позволяет представить спектр с постоянным шагом по скорости нейтрона, а закона $\tau(t) \sim t^3$ - с постоянным шагом по энергии нейтроча.

Авторы благодарят Ю.М.Останевича за ряд ценных замечаний и Г.П.Жукова за внимание к работе.

Литература

- 1. Л.А. Маталин, С.И. Чубаров, А.А.Иванов. Многоканальные анализаторы ядерной физики. Атомиздат, 1967.
- 2. А.М.Балагуров, Д.Балли, З.Георгиу и др. ОИЯЙ, Б1-3-9011, Дубна, 1975.
- 3. А.М.Балагуров, Й.П.Барабаш, В.Д.Шибаев. ОИЯИ, 10-9684, Дубна, 1976.
- 4. И.П.Барабаш, В.Д.Шибаев. ОИЯИ, Б1-10-8670,Дубна, 1975.

Рукопись поступила в издательский отдел 5 апреля 1976 года.