СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

дубна

19/11-76

10 - 9683

2747/2-76

C344.In

5-20

А.М.Балагуров, В.Д.Шибаев

ДИФРАКЦИОННЫЕ ИЗМЕРЕНИЯ ПО МЕТОДУ ВРЕМЕНИ ПРОЛЕТА С ИСПОЛЬЗОВАНИЕМ ПЕРЕМЕННОЙ ШИРИНЫ КАНАЛА

10 - 9683

А.М.Балагуров, В.Д.Шибаев

ДИФРАКЦИОННЫЕ ИЗМЕРЕНИЯ ПО МЕТОДУ ВРЕМЕНИ ПРОЛЕТА С ИСПОЛЬЗОВАНИЕМ ПЕРЕМЕННОЙ ШИРИНЫ КАНАЛА

1. Введение

В нейтронных дифракционных экспериментах по методу времени пролета анализ спектров обычно ведется анализаторами с постоянной шириной временного канала /1/. При выборе ширины каналы зачастую приходится идти на компромисс между двумя условиями: спектр должен уместиться в ограниченное число каналов анализатора и, с другой стороны, ширина канала должна быть достаточно мала, чтобы не ухудшать временное разрешение. Известным способом экономии памяти анализатора является разбиение ее на группы с различной шириной канала. Недостатком этого способа является кусочный характер спектров, что затрудняет их наблюдение и обработку, особенно при необходимости частой смены границ групп.

В работе /2/ высказывалась идея об использовании для наблюдения дифракционных спектров временного анализатора с переменной, изменяющейся по определенному аналитическому закону, шириной канала. В силу некоторых особенностей дифракционные спектры являются удобным объектом для применения к ним подобного способа наблюдения. Положения дифракционных максимумов на временной шкале определяются простым и, в то же время, строгим законом. Для дифракционных максимумов от одной кристаллографической плоскости справедливо

$$\mathbf{t}_{\mathbf{k}} = \mathbf{t}_{\mathbf{m}} / \mathbf{k}, \qquad /1/$$

t_k - положение k-го максимума, t_m-константа, определяемая свойствами кристалла и экспериментальными условнями.

3

Строгость соотношения /1/ позволяет легко идентифицировать дифракционные максимумы, несмотря на неизбежные отклонения реального закона изменения ширины канала от предполагаемого.

Использование постоянной ширины канала приводит к тому, что расстояния между максимума, а также их ширины при больших временах пролета становятся чрезмерно большими. Так, для монокристаллов расстояние между максимумами растет как t_k^2 , а ширина максимума пропорциональне t_k .

При анализе кристаллов с большими параметрами элементарной ячейки диапазон изменений k может составлять несколько десятков, соответственно во столько же раз будут меняться ширины максимумов, а расстояния между ними будут меняться в несколько тысяч раз.

Использование растущей со временем ширины канала позволяет значительно уменьшить диапазоны изменения ширин максимумов и расстояний между ними.

В настолщей работе описывается реализация этой идеи для закона изменения ширины канала

$$r(t) = t/\beta, \qquad /2/$$

где *β* - выбираемая экспериментором константа.

2. Основные соотношения

Из соотношения между дифференциалами числа каналов и времени

$$dN = dt/i(t) \qquad /3/$$

следует зависимость номера канала от момента времени

$$N(t) = \int_{t_1}^{t} \frac{d\xi}{r(\xi)}, \qquad /4/$$

t₁- время начала наблюдения. Для закона /2/ $N(t) = \beta \ln(t/t_1).$

Из /5/ легко получить основные характеристики спектра - ширину максимумов и расстояния между ними. На *рис. 1* приведены зависимости ширины максимума от времени для обычного метода, когда

Рис. 1. Зависимость ширины дифракционного максимума от времени. 1 - для $\tau(t) = const - \tau_0$. 2 - для $\tau(t) - t/\beta$.

 $\tau(t) = \text{const} = \tau_0$

и для закона /2/, а на рис. 2 схематически показано заполнение памяти анализатора/положения пиков/ для этих двух случаев. Параметры t_m , r_0 , β , t_1 при расчетах примерио соответствовали реальному эксперименту, описанному ниже. Из рисунков видно, что использование закона /2/ приводит к существенной /в несколько раз/ экономии памяти анализатора и к стабилизации ширины дифракционных максимумов вдоль спектра.

Рис. 2. Заполнение памяти анализатора; вверху для $\tau(t) = \tau_0$, внизу - для $\tau(t) = t/\beta$. Параметры при расчете выбраны так, что положения 10-х максимумов и интервал между 9-м и 10-м максимумами совпадают для обоих случаев.

Отметим еще, что зависимость ширины канала от номера канала для закона /2/ является экспоненциальной

$$r(N) = r_1 \cdot \exp(N/\beta), \qquad /6/$$

где $r_1 = t_1/\beta$ - начальная ширина канала. Поэтому постоянные во времени функции /например, фон/ превратятся в экспоненциальные функции номера канала.

3. Экспериментальная проверка

В Лаборатории нейтронной физики был разработан временной кодировщик ^{/3/} с переменной шириной канала /ВКПШК/, изменяющейся по закону /2/. Перед измерением реальных дифракционных спектров была проведена проверка работы этого кодировщика с помощью используемого в Измерительном центре ЛНФ кодировщика с постоянной шириной канала ВК-5^{/4/}. В качестве источника стартового и детекторного сигналов использовался генератор импульсов Г5-15.

Соответствие положений детекторных импульсов по каналам проверялось на основании формулы

$$N_{L} = \beta \ln \frac{T_{1} + \tau_{0} \cdot N_{c}}{\beta \cdot \dot{\tau}_{1}}, \qquad /7/$$

где N_L - номер канала при анализе с помощью кодировщика ВКПШК, N_c - номер канала при анализе с помощью кодировщика ВК-5, T₁ - задержка начала измерения, набранная на кодировщике ВК-5.

В табл. 1 приведены экспериментальные значения $N_c \ N_L$ и расчет N_L по /7/ при некоторых наборах T_i , β , r_1 . Соответствие экспериментальных и расчетных значений N_i лучше 1%.

Таблица 1

Проверка кодировщика с генератором *

Набор параметров	Nc	Число отсчетов	$\overline{N_c}$	NL	Число отсчетов	N.	расчет	ло (7)
$T_{I} = 400$ $\tau_{c} = 4$ $\tau_{r} = 4$ $\beta = I00$	191	1420	191	106 107	1278 373	106,2	106,8	
$T_{I} = 400$ $\tau_{o} = 4$ $\tau_{r} = 4$ $\rho = 100$	157	1311	I57	94 95	1856 673	94,4	94,4	
$T_{I} = 320$ $\tau_{c} = 4$ $\tau_{i} = 4$ $\beta = 80$	177 178	1815 123	171.1	93 94	1527 454	93,2	93,3	

*Временные параметры в мкс.

Для получения реальных дифракционных спектров использовался дейтерированный монокристалл двойного лантан-магниевого нитрата La $_2Mg_3(NO_3)_{12}$ 24D₂().Наблюдалась дифракция от плоскости (00 ℓ) с межплоскостным расстоянием d = 34,5A, что позволяло получать до 13 максимумов одновременно. Эксперимент проводился на реакторе ИБР-ЗО ЛНФ ОИЯИ на пролетной базе 57 *м*. Спектр, снятый со стандартным кодировщиком ВК-5, приведен на *рис.* 3, а спехтры, снятые с кодировщиком ВКПШК, на *рис.* 4 и 5. Набор проводился параллельно на двух анализаторах.

Из эссбенностей представленных спектров можно отметить улучшение условий наблюдения начального участка при использовании больших β /спектр на *puc.4*/ и значительное сокращение числа каналов, необходимых для наблюдения, при уменьшении β /спектр на *puc. 5*/.

Для того, чтобы уместить в памяти анализатора все наблюдаемые максимумы, начиная с 3-го порядка, потребовалось бы около 7200 каналов при обычном методе и только 1600 каналов /в 4,5 раза меньше/ при использовании ВКПШК с $\beta = 500$.

Для проверки выполнимости зависимости /5/ производилась обработка положений пиков по МНК. Свободными параметрами являлись t_m - положение первого максимума и t_0 - задержка вспышки реактора относительно запуска анализатора. При этом положение k -го максимума при обычном анализе

$$N_{k} = \frac{t_{m}/k + t_{0}}{\tau_{0}} , \qquad /8/$$

а для ВКПШК

$$N_{k} = \beta \ell n \frac{t_{n}/k + t_{0}}{\beta \cdot r_{1}} .$$
 (9/

Экспериментальные положения пиков определялись по максимуму счета с ошибкой <u>+1</u> канал.

Рис. 3. Дифракционный спектр, снятый с кодировщиком BK-5 при 10 = 32 мкс.

Рис. 4. Дифрикционный спектр, снятый с кодировщиком **ВКПШК**, при $r_1 = 14$ мкс, $\beta = 930$.

Рис. 5. Дифракционный спектр, снятый с кодировщиком ВКПШК, при $\tau_1 = 20$ мкс, $\beta = 500$.

Таблица 2 Экспериментальные и вычисленные положения максимумов при использовании ВК-5

K	Л∕экс.	<i>№</i> •ыч.	Nэкс	№ выч.
4	1816	1816,0	0,0	
5	I454	I453,8	0,2	
6	I2I2	1212,4	0,4	
7	I040	I040, 0	0,0	
8	9 II	9 I 0,6	0,4	
9	8 I O	810,0	0,0	
10	729	729,6	0,6	
II	664	663,7	0,3	
I2	609	608,8	0,2	
13	562	562,4	0,4	
I 4	523	522,6	0,4	
I 5	488	488,I	0,1	
16	458	457,9	С,І	

Таблица 3 Экспериментальные и вычисленные положения максимумов при использовании ВКПШК

к	√экс.	№ выч.	Nэкс Nвыч. (
4	I389	I389 , 0	0,0
5	II82	II82 , I	0,1
6	1013	1013,2	0,2
7	870	870,4	0,4
8	747	746,9	0,1
9	638	638,0	0,0
IO	54I	540,6	0,4
II	453	452,6	0,4
12	373	372,3	0,7
13	298	298,5	0,5
I 4	2 3 I	230 , 2	0,8
15	I66	I66 , 7	0,7
16	I07	107,3	0,3

Результаты обработки, относящиеся к спектрам, нзображенным на *рис. 3 и 4*, приведены в *табл. 2 и 3*, соответственно, а значения параметров, определенных по МНК, в *табл. 4*.

Физический параметр t для обоих кодировщиков совпадает с точностью О,2%.

	BK-5	вкпшк	вкпшк
t _m /32 мкс	7243 <u>+</u> 10	7227 <u>+</u> 10	7243
t ₀ /32 мкс	5,3 <u>+</u> 0,2	4,9 <u>+</u> 0,6	3,6 <u>+</u> 0,2
$\sqrt{\chi^2/(n-m)}$	0,32	0,47	0,89

Таблица 4 Значения параметров

Кроме того, спектр от ВКПШК обрабатывался с фиксированным значением параметра t_m,которое находилось из спектра от ВК-5. Результат приведен в последней колонке *табл.* 4. Представленные результаты говорят о том, что значения моментов времени, определяемых с помощью ВКПШК, соответствуют ожидаемым в пределах предполагаемой ошибки.

4. Заключение

В настоящей работе рассматривалось использование растущей со временем ширины канала для регистрации дифракционных спектров и было показано, что такой способ регистрации позволяет существенно экономить память анализатора, не ухудшая условий анализа и точности результатов.

Очевидно, что это справедливо для любого эксперимента по времени пролета, в котором временная неопределенность Λt постоянна вдоль спектра. Тогда использование $r(t) \sim t$ приведет к постоянству условий

ç

наблюдения: $\Lambda t/t = const$ вдоль спектра при сокращении необходимого объема памяти.

Не исключено использование других законов изменения ширины канала во времени. Не вдаваясь в детальный анализ, отметим, что использование закона $\tau(t) \sim t^2$ позволяет представить спектр с постоянным шагом по скорости нейтрона, а закона $\tau(t) \sim t^3$ - с постоянным шагом по энергии нейтроча.

Авторы благодарят Ю.М.Останевича за ряд ценных замечаний и Г.П.Жукова за внимание к работе.

Литература

- 1. Л.А.Маталин, С.И.Чубаров, А.А.Иванов. Многоканальные анализаторы ядерной физики. Атомиздат, 1967.
- 2. А.М.Балагуров, Д.Балли, З.Георгиу и др. ОИЯЙ, БІ-З-9011, Дубна, 1975.
- 3. А.М.Балагуров, И.П.Барабаш, В.Д.Шибаев. ОИЯИ, 10-9684, Дубна, 1976.
- 4. И.П.Барабаш, В.Д.Шибаев. ОИЯИ, Б1-10-8670, Дубна, 1975.

Рукопись поступила в издательский отдел 5 апреля 1976 года.