

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

27/9-82

10-82-490

В.Г.Одинцов

ОБОБЩЕННЫЕ ФОРМУЛЫ ДЛЯ ОПРЕДЕЛЕНИЯ КИНЕМАТИЧЕСКИХ ПАРАМЕТРОВ ТРЕКОВ ЗАРЯЖЕННЫХ ЧАСТИЦ С УЧЕТОМ ПОЛНОЙ МАТРИЦЫ ОШИБОК В ФАКТОРИЗОВАННОМ ПРЕДСТАВЛЕНИИ

введение

В работах^{/1-3/} предложен метод и получены формулы для определения кинематических параметров треков заряженных частиц с учетом полной матрицы ошибок в факторизованном представлении.В работе^{/4/} этот метод был реализован в виде программных средств. С помощью созданных программ для моделированных событий^{/5/} были выполнены расчеты по восстановлению кинематических параметров заряженных частиц в условиях спектрометра ГИПЕРОН^{/6/}. Новый метод обеспечил предельно возможную точность определения параметров треков при достаточно высокой скорости обработки отдельного события^{/4/}.

Однако существует обстоятельство, которое ограничило применение указанного метода при обработке реальных событий. Оно заключается в следующем.

Математический аппарат, разработанный в^{/1-3/} для определения параметров треков, применим лишь в предположении, что число измерений на треке четно. Реальное же событие составлено из произвольного числа измерений.

В настоящей работе предпринята успешная попытка обобщить результаты работ^{71—37} для треков с произвольным числом измеренных точек.

1. ФАКТОРИЗОВАННОЕ ПРЕДСТАВЛЕНИЕ ИНФОРМАЦИОННЫХ МАТРИЦ И ФОРМУЛЫ ДЛЯ ПОЛУЧЕНИЯ КИНЕМАТИЧЕСКИХ ПАРАМЕТРОВ ТРЕКОВ С ПРОИЗВОЛЬНЫМ ЧИСЛОМ ИЗМЕРЕННЫХ ТОЧЕК

В работе⁷²⁷ приведен общий вид функции правдоподобия, с помощью которой осуществляется поиск параметров трека заряженной частицы:

$$L = (2\pi)^{-N} |C|^{-\frac{1}{2}} \exp[-\frac{1}{2}\Delta Y C^{-1} \Delta Y^{T}], \qquad (1.1/2)$$

где С= $\Sigma_{KYЛ,+} \Sigma_{H3M,+} C^{-1} = (\Sigma_{KYЛ,+} \Sigma_{H3M,+})^{-1}, \Sigma_{KYЛ,-}$ ковариационная матрица кулоновского рассеяния, $\Sigma_{H3M,-}$ матрица аппаратурных погрешностей $^{/1,2/}, \Delta Y = \{Y_1 - \langle Y_1 \rangle, ..., Y_N - \langle Y_N \rangle\}$ - вектор-строка разности измеренных координат точек на треке и их средних /мо-дельных/ значений.

Воспользовавшись результатами работы^{/2/}, функцию правдоподобия /1.1/ можно переписать в виде

$$L = (2\pi)^{-N} \left(\prod_{k=1}^{N} \Delta s_{k}^{2} \det R\right)^{-\frac{1}{2}} \exp\left[-\frac{1}{2} \Delta t R^{-1} \Delta t^{T}\right]. -\frac{1}{2} \Delta t^{-\frac{1}{2}} \Delta t^{-\frac{1}{2}} \Delta t^{-\frac{1}{2}}$$

1

Здесь ∆t - вектор-строка случайных величин в новом представлении /см. работу /2/ /, R - пятидиагональная симметричная матрица вида

$$R = \begin{pmatrix} b_1 a_2 & 0 \\ a_2 b_2 & & \\ \vdots & \vdots & a_m \\ 0 & a_m^T & b_m \end{pmatrix}$$
 (1.3/

Матрицы $\{a_i\}_{i=2}^m$, $\{b_i\}_{i=1}^m$ имеют размерность [2,2] и описаны в работе/1/.

Обратная к R матрица согласно^{/1/} запишется следующим образом:

$$\mathbf{R}^{-1} = \begin{bmatrix} \mathbf{V}_{1}\mathbf{W}_{1} \dots \mathbf{V}_{1}\mathbf{W}_{m} \\ \mathbf{W}_{2}^{\mathrm{T}}\mathbf{V}_{1}^{\mathrm{T}} \mathbf{V}_{2}\mathbf{W}_{2} & \mathbf{V}_{2}\mathbf{W}_{m} \\ \vdots & \vdots & \vdots \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ \mathbf{W}_{m}^{\mathrm{T}}\mathbf{V}_{1}^{\mathrm{T}} \dots \mathbf{V}_{m}\mathbf{W}_{m} \end{bmatrix}$$
 (1.4/

Матрицы $\{V_i\}_{i=1}^m$, $\{W_i\}_{i=1}^m$ имеют также размерность [2,2] и описаны

Представления /1.3/, /1.4/ матриц R и R⁻¹ получены при условии, что N=2m, т.е. число измеренных на треке точек четно. Положим, что N=2m+1.

Тогда матрица ошибок в /1.2/ согласно результатам /1/ будет иметь следующий вид:

$$B = \begin{bmatrix} R & 0 \\ R & 0 \\ & \eta \\ 0 & 0 \dots & 0 & \eta \\ 0 & 0 \dots & 0 & \eta \\ \mu & \rho \end{bmatrix} \qquad . \qquad /1.5/$$

Конкретный вид элементов η , μ , ρ можно легко получить, воспользовавшись формулами /2.5/ и /2.6/ из работы /1/.

Весовую матрицу В⁻¹ получим, применив к В формулу обращения блочных матриц Фробениуса /7/:

$$B^{-1} = \begin{bmatrix} K^{-1} & -K^{-1}H\rho^{-1} \\ -\rho^{-1}H^{T}K^{-T} & \rho^{-1}+\rho^{-2}H^{T}K^{-1}H \end{bmatrix}, \qquad (1.6)$$

Где

$$H = \begin{bmatrix} 0\\ 0\\ \vdots\\ \eta\\ \mu \end{bmatrix}$$
, $K = R - \rho^{-1} H H^{T}$.
Существование матрицы B^{-1} доказано $B^{/8/2}$

Матрица К является неособенной симметричной пятидиагональной матрицей, и поэтому для матрицы К $^{-1}$ справедливо представление вида /1.4/:

$$\mathbf{K}^{-1} = \begin{bmatrix} \vec{\mathbf{v}}_{1} \ \vec{\mathbf{w}}_{1} \dots \cdots \vec{\mathbf{v}}_{1} \ \vec{\mathbf{w}}_{m} \\ \vec{\mathbf{w}}_{2}^{\mathsf{T}} \vec{\mathbf{v}}_{1} \ \vec{\mathbf{v}}_{2} \ \vec{\mathbf{w}}_{2} \dots \ \vec{\mathbf{v}}_{2} \ \vec{\mathbf{w}}_{m} \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \vec{\mathbf{w}}_{m}^{\mathsf{T}} \ \vec{\mathbf{v}}_{1}^{\mathsf{T}} \ \vec{\mathbf{v}}_{1} \ \cdots & \vec{\mathbf{v}}_{m} \ \vec{\mathbf{w}}_{m} \end{bmatrix} = \vec{\mathbf{v}} \ \vec{\mathbf{w}}.$$

Матрицы $\{\tilde{V}_i\}_{i=1}^m, \{\tilde{W}_i\}_{i=1}^m$ размерности [2,2] можно получить с по-мощью рекурсий /3.3/-/3.5/ из работы /1/. Введем обозначения: $d = [\frac{\eta}{\mu}], c = \rho^{-1} + \rho^{-2} H^T K^{-1} H$. Тогда с учетом /1.7/ матрица B^{-1} может быть переписана следующим обра-20111

$$B^{-1} = \begin{bmatrix} \tilde{\mathbf{v}} \tilde{\mathbf{w}} & -\rho^{-1} \tilde{\mathbf{v}}_{1} \tilde{\mathbf{w}}_{m} d \\ & & \ddots \\ & & -\rho^{-1} \tilde{\mathbf{v}}_{m} \tilde{\mathbf{w}}_{m} d \end{bmatrix} \cdot /1.8/$$

Факторизуем ее, представив в виде следующего произведения /2/:

Параметры ℓ , p, h и матрицу $\tilde{\beta}_{m+1}$ найдем, перемножив матрицы в /1.9/ и сравнив результат с /1.8/:

$$f = \frac{c\rho}{m\tilde{w}_{11}\eta + m\tilde{w}_{12}\mu}, \quad p = \frac{m\tilde{w}_{21}\eta + m\tilde{w}_{22}\mu}{m\tilde{w}_{11}\eta + m\tilde{w}_{12}\mu}, \quad /1.10/$$

$$h = \frac{m\tilde{w}_{11}\eta + m\tilde{w}_{12}\mu}{c\rho^2}, \quad \tilde{\beta}_{m+1} = \begin{bmatrix} h & hp \\ hp & hp^2 \end{bmatrix}.$$

Факторизуем центральную матрицу в выражении /1.9/:

$$\begin{bmatrix} \tilde{\beta}_{1} - \tilde{\beta}_{2} \\ \vdots \\ \vdots \\ \tilde{\beta}_{m} - \tilde{\beta}_{m+1} \\ h \end{bmatrix} = \begin{bmatrix} \tilde{Q}_{1} \\ \vdots \\ \tilde{Q}_{m} \\ 1 \end{bmatrix} \begin{bmatrix} \tilde{\omega}_{1} \\ \vdots \\ \vdots \\ \tilde{\omega}_{m} \\ h \end{bmatrix} \begin{bmatrix} \tilde{Q}_{1} \\ \vdots \\ \vdots \\ \vdots \\ \tilde{\omega}_{m} \\ h \end{bmatrix} \begin{bmatrix} \tilde{Q}_{1} \\ \vdots \\ \vdots \\ \tilde{Q}_{m} \\ 1 \end{bmatrix}.$$
 (1.11/

Учитывая результаты работы^{/2/}, функционал, записанный в показателе экспоненциального множителя функции правдоподобия /1.2/, можно переписать в виде

$$\chi^2 = -\frac{1}{2} \Delta \mathbf{u} \mathbf{D} \Delta \mathbf{u}^{\mathrm{T}}. \qquad (1.12)$$

В выражении /1.12/ матрица D диагональна и имеет вид

$$D = \begin{bmatrix} \omega_1 \\ \vdots \\ \vdots \\ \omega_m \end{bmatrix}, N = 2m^{1/2}, D = \begin{bmatrix} \omega_1 \\ \vdots \\ \vdots \\ \omega_m \\ h \end{bmatrix}, N = 2m + 1.$$
 /1.13/

Вектор-строка случайных величин представится следующим выражением:

$$\Delta u = \{\Delta t_1 V_1 Q_1, (\sum_{k=1}^{2} \Delta t_k V_k) Q_2, \dots, (\sum_{k=1}^{m} \Delta t_k V_k) Q_m\}, N = 2m, (2)$$

$$\Delta u = \{\Delta t_1 \tilde{V}_1 \tilde{Q}_1, (\sum_{k=1}^{2} \Delta t_k \tilde{V}_k) \tilde{Q}_2, \dots, (\sum_{k=1}^{m} \Delta t_k \tilde{V}_k) \tilde{Q}_m, /(1.14)$$

$$[(\sum_{k=1}^{m} \Delta t_k \tilde{V}_k)] [\frac{1}{p}] + \Delta t_N^{\ell}]\}, N = 2m + 1,$$

где $\Delta t_{N=}(t_N - t_{N-1}) - (\langle t_N \rangle - \langle t_{N-1} \rangle)$ в соответствии с обозначениями /3.4/ работы /2/.

Формулы /1.12/-/1.14/ являются количественным выражением математической модели кинематического анализа треков заряженных частиц^{/2/} с произвольным числом измеренных точек.

2. ФОРМУЛЫ ДЛЯ ПОЛУЧЕНИЯ КИНЕМАТИЧЕСКИХ ПАРАМЕТРОВ ПРЯМОЛИНЕЙНЫХ ТРЕКОВ С ПРОИЗВОЛЬНЫМ ЧИСЛОМ ИЗМЕРЕНИЙ

Модельная траектория ^{/2,3/}, описывающая прямолинейный трек в одной из проекций /например, YOX /, имеет вид

$$(Y) = ax + b.$$
 /2.1/

Формулы для определения параметров а и b треков с четным числом измеренных точек получены в работе /3/.

Рассмотрим случай, когда число измерений, выполненных вдоль трека, нечетно. Постараемся воспользоваться тем же самым математическим аппаратом для определения параметров a и b, что и в ^{/3/}. Для нечетного N = 2m+1 измерения введем следующие обозначения /в соответствии с обозначениями /4/-/7/ работы ^{/3/}/:

$$\delta t_{m+1} = \{t_N - t_{N-1}, 0\}, N = 2m+1, \widetilde{V}_{m+1} = \begin{bmatrix} \ell & 0 \\ 0 & \ell \end{bmatrix},$$

$$\widetilde{Q}_{m+1} = \begin{bmatrix} 1 & 0 \\ p & 1 \end{bmatrix}, \qquad \widetilde{\omega}_{m+1} = \begin{bmatrix} h & 0 \\ 0 & 0 \end{bmatrix}.$$
/2.2/

При этом выполняются соотношения /3.7/-/3.8/ работы /2/,

$$\begin{split} \widetilde{\mathbf{Q}}_{m+1} & \widetilde{\omega}_{m+1} \widetilde{\mathbf{Q}}_{m+1} = \begin{bmatrix} 1 & 0 \\ p & 0 \end{bmatrix} \begin{bmatrix} h & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & p \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} h & ph \\ hp & hp^2 \end{bmatrix} = \\ & = \widetilde{\beta}_{m+1} - \widetilde{\beta}_{m+2}; \quad \widetilde{\beta}_{m+2} = 0. \end{split}$$

Тогда, как и в^{/3/}, вектор-строка случайных величин запишется следующим образом:

$$\Delta u = \{ \sum_{k=1}^{i} (\delta t_k \widetilde{V}_k) \widetilde{Q}_i - (a + \frac{b}{\Delta s_1}, -\frac{b}{\Delta s_1}) \widetilde{V}_1 \widetilde{Q}_i \}_{i=1}^{m+1},$$
 /2.4/

а функционал /13/ из работы^{/3/} будет иметь вид

$$\chi^{2} = \frac{1}{2} + \sum_{i=1}^{m+1} t_{1} [\tilde{v}_{11} - \tilde{v}_{21} + (\tilde{v}_{12} - \tilde{v}_{22})\tilde{q}_{1}] - a[\tilde{v}_{11} + \tilde{v}_{12}\tilde{q}_{1}] - \frac{b}{2s_{1}} [\tilde{v}_{11} - \tilde{v}_{21} + (\tilde{v}_{12} - \tilde{v}_{22})\tilde{q}_{1}] + t_{2}(\tilde{v}_{21} + \tilde{v}_{22}\tilde{q}_{1}) + [\sum_{k=2}^{i} \delta t_{k}\tilde{V}_{k}]_{11} + \frac{2.5}{(i+1)} [\tilde{v}_{12} - \tilde{v}_{22}] - a\tilde{v}_{12} + \frac{b}{\Delta s_{1}}(\tilde{v}_{12} - \tilde{v}_{22}) + \frac{b}{\Delta s_{1}}(\tilde{v}_{12} - \tilde{v}_{22}) + \frac{b}{2s_{1}}(\tilde{v}_{12} - \tilde{v}_{12} - \tilde{v}_{12}) + \frac{b}{2s_{1}}(\tilde{v}_{12} - \tilde{v}_{12}) + \frac{b}{2s_{1}}(\tilde{v}_{12}$$

Здесь ^{m+1} $\tilde{\omega}_{11}$ ^{m+1} $\tilde{\omega}_{22}$ =0, \tilde{q}_{m+1} = p. Остальные обозначения соответствуют обозначениям /13/ работы

Далее, следуя формализму, используемому в^{/3/} для определения параметров а и b, получим для них конечный вид формул, когда число измеренных вдоль трека точек произвольно.

$$\begin{cases} \mathbf{a} = \mathbf{t}_{2} + \frac{\det \left| \sum_{i=2}^{m} \delta t_{i} \mathbf{W}_{i} \right|}{\det \left| \mathbf{W}_{1} \right|}, \\ \frac{\mathbf{b}}{\Delta \mathbf{s}_{1}} = \mathbf{t}_{1} - \mathbf{t}_{2} + \frac{\mathbf{K}(\mathbf{a} - \mathbf{t}_{2})}{\mathbf{FP}^{\mathrm{T}}} + \frac{\mathbf{P} \sum_{i=2}^{m+1} \mathbf{W}_{i} \delta t_{i}}{\mathbf{FP}^{\mathrm{T}}}, \quad \mathbf{N} = 2\mathrm{m}, \end{cases}$$

$$(2.6)$$

$$\mathbf{a} = \mathbf{t}_{2} + \frac{\det \left[\begin{array}{c} \mathbf{F} \\ \mathbf{m+1} \\ \mathbf{i} \leq \mathbf{g} \\ \mathbf{k} \\ \mathbf{k$$

$$\begin{pmatrix} \frac{b}{\Delta s_1} = t_1 - t_2 + \frac{\widetilde{K}(a - t_2)}{\widetilde{F}\widetilde{P}^T} + \frac{P \sum_{i=2}^{\infty} W_i \delta t_i^T}{\widetilde{F} \widetilde{P}^T}, \quad N = 2m + 1. \\ ec_b \end{cases}$$

Здесь

$$\widetilde{W}_{m+1} = \widetilde{\beta}_{m+1} \widetilde{V}_{m+1}^{T} = \begin{bmatrix} h \ell & hp \ell \\ \\ hp \ell & hp^2 \ell \end{bmatrix} .$$
 /2.8/

Остальные обозначения приведены в работе /3/

ЗАКЛЮЧЕНИЕ

В выражениях /1.12/-/1.14/ и /2.6/-/2.8/ представлен вид функционала и формул для определения параметров треков, обобщенный для случая произвольного числа измерений, выполненных вдоль трека.

Из сравнения выражений /1.13/ и /1.14/, а также /2.6/ и /2.7/ видно, что они имеют незначительные отличия. Это обстоятельство позволяет эффективно использовать одни и те же численные процедуры для нахождения кинематических параметров треков в случаях как с четным, так и нечетным числом измеренных на треке точек.

В заключение автор благодарит В.П.Джелепова, Ю.А.Будагова и В.Б.Флягина за постоянный интерес к работе и ряд ценных советов, Г.А.Емельяненко за плодотворные дискуссии и критические замечания, Р.М.Гасанбекова за помощь в работе.

ЛИТЕРАТУРА

1. Будагов Ю.А. и др. ОИЯИ, Р10-9950, Дубна, 1976.

- 2. Емельяненко Г.А., Одинцов В.Г. ОИЯИ, Р10-11127, Дубна, 1977.
- 3. Гасанбеков Р.М. и др. ОИЯИ, Р10-12712, Дубна, 1979.
- 4. Виноградов В.Б. и др. ОИЯИ, 1-13015, Дубна, 1980.
- 5. Виноградов В.Б. и др. ОИЯИ, 1-10997, Дубна, 1977.
- 6. Акименко С.А. и др. ОИЯИ, 1-8948, Дубна, 1975.
- 7. Гантмахер Ф.Р. Теория матриц. "Наука", М., 1967.
- 8. Емельяненко Г.А. ОИЯИ, Р11-6933, Дубна, 1973.

Рукопись поступила в издательский отдел 28 июня 1982 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

Д13-11182	Труды IX Международного симпозиума по ядерной элект- ронике. Варна, 1977.	5	p.	00	к.
Д17-11490	Труды Международного симпозиума по избранным пробле- мам статистической механики. Дубна, 1977.	6	p.	00	к,
A6-11574	Сборник аннотаций XV совещания по ядерной спектроско- пии и теории ядра. Дубна, 1978.	2	p.	50	к.
Д3-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3	p.	00	к.
Д13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, <mark>1</mark> 978.	6	p.	00	к.
	Труды VI Всесоюзного сошещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	р.	40	к.
Д1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5	р.	00	к.
Д1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3	р.	00	к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	p.	00	к.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЭВМ и их применению в теоретической физике, Дубна, 1979	3	p.	50	н.
д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3	р.	00	к.
д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	p.	00	к.
Д2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2	р.	50	к.
A10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	р.	50	к.
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3	р.	60	к.
Д17-81-758	Труды II Международного симпозиуна по избранным пробленам статистической механики. Дубна, 1981.	5	p.	40	к.
Д1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3	p.	20	к.
P18-82-117	Труды IV совещания по использованию новых ядерно- Физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3	p.	80	к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

10-82-490 Одинцов В.Г. Обобщенные формулы для определения кинематических параметров треков заряженных частиц с учетом полной матрицы ошибок в факторизованном представлении Предложена математическая модель, и на ее основе разработан быстрый алгорити для определения кинематических параметров треков заряженных частиц с произвольным числом измеренных точек, которое производится с учетом полной матрицы ошибок в факторизованном представлении. Целью работы является получение удобного аналитического представления формул для вычисления кинематических параметров треков заряженных частиц. В частности, такое представление получено для параметров прямолинейных треков. Описанные алгоритмы могут быть использованы для обработки как камерных снимков. так и данных электронных экспериментов. Работа выполнена в Лаборатории ядерных проблем ОИЯИ. Сообщение Объединенного института ядерных исследований. Дубна 1982 10-82-490 Odintsov V.G. Generalized Formulas for Determining Kinematic Parameters of Charged Particle Tracks with the Account of Total Error Matrix In Factorized Representation A mathematical model is presented on which base a rapid algorithm for determination of kinematic parameters of charged particle tracks with arbitrary number of measured points is developed. The track parameters are determined taking into account error total matrix in factor representation. The aim of the work is to obtain appropriate analytical representation for formulas needed to determine kinematic parameters of charged particle tracks. In particular, such representation has been obtained for parameters of rectangular tracks. The algorithms could be used for processing both chamber photographs and of the electron experimental data. The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1982

Перевод О.С.Виноградовой.

4