СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

10 - 7611

13/11-2

986/2-74 Е.И.Дьячков, И.Клугов, Э.В.Козубский, Р.М.Лебедев, И.С.Саитов

> ОПТИЧЕСКИЕ КОНСТАНТЫ ПРОГРАММЫ ГЕОМЕТРИЧЕСКОЙ РЕКОНСТРУКЦИИ СОБЫТИЙ ДЛЯ ЭКСПОЗИЦИЙ 100-САНТИМЕТРОВОЙ ВОДОРОДНОЙ ПУЗЫРЬКОВОЙ КАМЕРЫ В ПУЧКЕ 77⁻⁻-МЕЗОНОВ С ИМПУЛЬСОМ 5 ГЭВ/С

ЛАБОРАТОРИЯ ВЫСОНИХ ЭНЕРГИЙ

10 - 7611

Е.И.Дьячков, И.Клугов*; Э.В.Козубский, Р.М.Лебедев, И.С.Сантов

ł

ОПТИЧЕСКИЕ КОНСТАНТЫ ПРОГРАММЫ ГЕОМЕТРИЧЕСКОЙ РЕКОНСТРУКЦИИ СОБЫТИЙ ДЛЯ ЭКСПОЗИЦИЙ 100-САНТИМЕТРОВОЙ ВОДОРОДНОЙ ПУЗЫРЬКОВОЙ КАМЕРЫ В ПУЧКЕ П⁻⁻-МЕЗОНОВ С ИМПУЛЬСОМ 5 ГЭВ/С

^{*} ИФВЭ АН ГДР, Берлин

В девяти сеансах облучения IOO-сантиметровой водородной пузырьковой камеры ЛВЭ ОИЯИ в пучке л⁻⁻-мезонов с импульсом 5 ГэВ/с было получено более 5ОО тысяч синмков. При обработке этого экспериментального материала геометрическая рекоиструкция измеренных зобытий проводилась в ОИЯИ и ИФВЭ АН ГДР /Берлин/ с помощью программы THRESH /1,2/. Ниже приводятся таблицы оптических констант для программы THRESH, которые использовалясь при обработке событий, полученных в разных сеансах облучения.

Обычно определение указанных констант производится с помощью программы РҮТНОЛ^{/1/}. Мы не смогли воспользоваться ею, т.к. в рабочем объеме 10О-сантиметровой камеры имеется только одна репериая плоскость /3/ вместо двух, необходнмых для использования программы РҮТНОЛ.

В связи с этим оптические константы программы THRESH для первых пяти сеансов облучения были определены расчетным путем на основе результатов аттестации фотограмметрических камер, произведенной ЛИТМО^{/4/}. При обработке событий из этих сеансов в программе

THRESH для учета дисторсии использовались формулы, в которых заложено предположение об аксиальной симметрии дисторсии:

> $X = C_1 x , \qquad Y = C_1 y ,$ $C_1 - \frac{d}{d} (\beta_1 + \beta_3 r^2 + \beta_5 r^4) ,$

где $r^2 = x^2 + y^2$,

3

 $\dot{o} - Z$ - ая координата входного зрачка объектива, X и Y - кажущиеся координаты в плоскости Z = 0⁺, исправленные на дисторсию объектива, x и у - кажущиеся координаты точки в ллоскости Z = 137, 1 см.

Отклонения реальной оптики от расчетной компенсировались путем введения поправок в координаты оптических осей по методу, изложенному в работе ^{/5/}.

Фотографирование следов частии в последних четырех сеансах производилось с помощью второго комплекта фотокамер. Ввиду отсутствия данных об оптических функциях объективов этого комплекта определение констаят проводилось с помощью программы REFER, которая была создана специально для определения констант 100сантиметровой камеры путем обработки результатов тестных съемок реперных крестов в рабочем объеме камеры.

В программе REFER коэффициенты β_і находились в виде, пригодном для учета дисторски по стаидартным формулам программы THRESH:

$$\begin{aligned} \mathbf{X} &= \mathbf{C}_{2} \mathbf{X}', \quad \mathbf{Y} &= \mathbf{C}_{2} \mathbf{Y}' + \beta_{7} (\frac{\mathbf{X}'}{\mathbf{d}})^{2}, \\ \mathbf{C}_{2} &= 1 + \beta_{1} \frac{\mathbf{X}'}{\mathbf{d}} + \beta_{2} \frac{\mathbf{Y}'}{\mathbf{d}} + \beta_{3} \frac{\mathbf{X}' \mathbf{Y}'}{\mathbf{d}^{2}} + \beta_{4} (\frac{\mathbf{X}'}{\mathbf{d}})^{2} + \beta_{5} (\frac{\mathbf{Y}'}{\mathbf{d}})^{2} + \beta_{6} (\frac{\mathbf{X}'^{2} \mathbf{Y}'}{\mathbf{d}^{2}})^{2}, \end{aligned}$$

где Х'н Y' - кажущиеся координаты точки в плоскости Z=0 до внесения поправок на дисторсию.

Значения коэффициентов β_i приведены в *табл. 3,* где в связи с использованием двух различных формул для учета дисторсии одноименные коэффициенты в некоторых случаях отличаются для первого и второго комплектов на несколько порядков.

^{*} Z = 0 •плоскость реперных крестов на главном стекле камеры /граница жидкий водород - стекло/. Ось Z направлена в сторону фотокамер.

В 100-сантиметровой камере среди сред, через которые производится фотог, афирование, имеется слой газообразного водорода с перепалом температур от комнатной до рабочей температуры камеры /7/, и, следовательно, с неоднородным показателем преломления. По оценкам, выполненным В работе /6/, дисторсии, обусловленные неоднородностью показателя преломления этого газового слоя, малы. Поэтому в блоке MEDIA неоднородность газового слоя учтена приблаженно: были введены два слоя с однородными показателями преломления.

Показатель преломления жндкого водорода в метастабильном состоянии находился с помощью днаграммы плотность - показатель преломления /8/ после определения плотности жндкого водорода из параметров рабочего режима камеры: коэффициента адиабатического расширения жидкого водорода и его температуры и давления перед расширением. Найденное таким образом значение плотности сравнивалось со значением, полученным по измерениям среднего пробега µ -мезонов от расиада n⁺-мезонов. Оба способа дали согласующиеся результаты.

Исследование методических вопросов, связанных с обработкой снимков со ІОО-сантиметровой камеры /7/, показало, что с помощью описываемых оптических констант был достигнут стандартный для водородных пузырьковых камер уровень точности при измерениях координат, углов, импульсов и эффективных масс.

Авторы признательны В.Н.Алмазову, В.И. Молоствовой, В.И. Морозу и А.П. Стельмаху за помощь в работе.

Литература

- 1. TC Program Library, CERN, vol. 1,2,3, 1968.
- 2. Н.А.Буздавина и др. Препринт ОИЯИ Р11-4762, Дубна, 1969.
- 3. В.В.Глаголев и др. Препринт ОИЯИ 13-3031, Дубна, 1965.
- 4. В.В.Глаголев и др. Преприня ОИЯИ 13-3633, Дубна, 1967.
- Э.В.Козубский, Нго Куанг Зуй. Преприня ОИЯИ, 13-4201, Дубна, 1968.

- 6. Э.В.Козубский и ор. ОИЯИ, Б4-2801, Дубна, 1966.
- 7. М.Вальтер 1. др. Сообщение ОИЯИ 1-7153, Дубна, 1973.
- 8. А.В.Белоногов, В.М.Горбунков. ПТЭ №,3,188 / 1965/.

Рукопись поступила в издательский отдел 17 декабря 1973 года.

	Табляца I				
Характеристики	оптических	сред,	задаваемые	в	блоке
	MEDIA				

Среда	Толщина слоя	Показатель		
BOJIVY	114	1 000		
газообразный волорол	44.50	1,000		
газообразный водород	72 14	1,000211		
стекло К-8 жилкий водорол	25,45 30.00	1,516300		

6

ТАБЛИЦА 2.

Координать входных эречнов объективов, задаваемые в блоке САМЕВА

номер фото- камери	косрдинати Бходного Зрачка	номер севиса облучения					
		16,21,23,24,25	2 6	27	30	31	
	· x	24,4966	24,5195	24,5194	24,5194	24,5195	
I	У	-25,0023	-25,CO3I	-25,0029	-25,0(2)	-25,0029	
	2	153,565	153,257	152,901	152,535	152,901	
	X	24,4974	24,50I.6	24, 5034	24,5037	24,5(34	
2	7	25,0007	25,C2 96	25,0306	25,0304	25,0366	
	2	153,565	153,505	152,990	152,030	152, 990	
	X	-6,4977	-6,4773	-6,4770	-6,4763	-0,4770	
3	y	-25,0027	-24,9909	-24,9924	-24,9930	-24,9924	
	Z	153,565	153,544	153,358	153,600	15 3,3 63	
	X	-6,4994	-6,503I	-6,5(23	-3,5030	-8,5C23	
4	7	25,0064	25,6167	25,0172	20,CI73	25,1172	
	Z	153,565	152,591	153,230	163,60I	103 ,2 30	

-

Tadanga 3.	Поправочные	коэффициенты,	BRIABRONHO

10000		номер савнов облучения				
кажеры		16,21,23-25	26	27	30	31
	A. 10 ³	60,743	1,980	3,510	2,920	3,510
	$\beta_{1} 10^{3}$	0	1,270	3,270	2,370	3,2.70
1	6.103	8,843-10 ⁻³	3,435	2,583	3,251	2,583
1	$\beta_{v} \cdot 10^{2}$	0	9,330	3,099	9,194	3,099
	$\beta_{\rm c} 10^2$	-2,302·10 ⁻⁶	3,947	4,089	4,174	4,089
i	A 102	0	2,030	1,701	1,975	1,701
	β , 10 ²	0	-3,194	-8,027	2,510	-8,027
	A. 10 ³	60,749	2,430	2,280	2,350	2,280
	A 10 ³	0	-/,480	-0,690	-0,680	-0,890
i	A.10	8,843-10 ⁻³	-5,350	-3,501	-3,930	-3,600
2	$\beta \cdot 10^2$	0	3,633	3,:20	3,352	3,320
	β 10 ⁶	-2,3N2·10 ⁻⁶	3,945	4,005	4,032	i 4,005
	A 10 ²	0	3,989	4,365	4,312	4,365
	$\beta_1 \cdot 10^2$	0	-3,504	-4,690	-3,283	-4,690
	A. 10 ³	60,749	-0,220	-0,220	0,240	-0,220
	B. 10 ³	0	-1,260	-1,160	-2,250	-1,160
	B, 10 ³	7,997.10-3	-6,396	-6,196	-6,418	-6,196
3 1	/3 · 10 ²	0	1,723	1,751	1,754	1,751
	$\beta_{\rm c} 10^2$	-1,992-10-6	1,643	1,745	1,939	1,745
	$\beta_{c} \cdot 10^{2}$	0	i 4,112	4,292	4,005	4,232
	B, 10"	0	-12,484	-16,954	4,651	-16,954
	B. 103	60,751	0,640	0,110	0,210	0,110
	B.103	0	2,490	2,420	2,770	2,420
	β, 10 ³	9,097-10-3	9,075	4,407	4,667	4,407
4	(A 10 ²	0	1,895	1,398	1,586	1,398
	β. 10 ²	-2,427-10-6	1,394	1,598	1,418	1,098
	B.102	0	3,438	4,106	4,364	4,106
	i 0, 10 ²	i o	1 12,120	1 8,390	-8,790	1 8,330