

сообщения объединенного института ядерных исследований дубна

11/11-79 10 - 12229

Д.Хорват

X-79

ПРОГРАММА ОБРАБОТКИ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ ПО ИЗУЧЕНИЮ ЗАХВАТА *я*<sup>-</sup>-МЕЗОНОВ ЯДРАМИ СВЯЗАННОГО В ВЕЩЕСТВЕ ВОДОРОДА



10 - 12229

Д.Хорват

ПРОГРАММА ОБРАБОТКИ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ ПО ИЗУЧЕНИЮ ЗАХВАТА *я* – МЕЗОНОВ ЯДРАМИ СВЯЗАННОГО В ВЕЩЕСТВЕ ВОДОРОДА

OGRANIE CLANE STREET, MORNEL BORNEL SHE MOTEHA

Хорват Д.

Программа обработки экспериментальных данных по изучению захвата *т*-мезонов ядрами связанного в веществе водорода

Описана программа PICHEM для определения вероятности захвата п<sup>-</sup> -мезонов ядрами связанного водорода по экспериментальным значениям скорости образования п<sup>о</sup> -мезонов в водородсодержашем вешестве. Программа позволяет обрабатывать экспериментальные данные, полученные для различных образцов, по отдельности и совместно, т.е. при "общих" параметрах распределения пучка лионов по пробегу в вешестве. При этом для каждой мишени вычисляется эквивалентная гормозная толшина и оп ределяется число останавливающихся в ней пионов относительно стандартной мишени. При вычислении числа остановох мезонов учитывается "реальная форма" распределения пучка по пробегу.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1979

Horvath D.

10 - 12229

A Computer Program for the Evalution of Experimental Data on the Capture of Negative Pions in the Nuclei of Chemically Bound Hydrogen Atoms

A computer program for estimating the probability of  $\pi^-$ -capture in the nuclei of bound hydrogen atoms by the experimental values of  $\pi^0$  -meson formation rate in hydrogen-containing substances is described. Using the program, the experimental data obtained for various samples can be evaluated both individually and simultaneously, that is with common parameters of the range (energy) distribution of the pion beam. During the evaluated and the number of stopped pions is determined in comparision with a standard target. For estimating the stoppage numbers the actual form of the pion beam into account,

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1979

### C 1979 Объедяненный янститут ядерных исследований Дубна

#### 1. ПОСТАНОВКА ЗАДАЧИ

Описываемая программа PICHEM /от английского PIONIC СНЕМІЗТКУ / предназначена для обработки экспериментальных результатов, полученных одним из методов "мезохимии", а именно путем изучения захвата остановившихся  $\pi^-$ -мезонов ядрами связанного в химических соединениях водорода /1/. Программа может быть использована также для обработки опытных данных /кривых остановок/, полученных другими методами.

В наших опытах ядерный захват пионов наблюдается в реакции ядерной перезарядки

 $\pi^{-} + \mathbf{p} \rightarrow \mathbf{n} + \pi^{\circ} \qquad /1/$ 

путем регистрации пар  $\gamma$ -квантов. Цель экспериментов - определить вероятность  $W_x$  захвата  $\pi^-$ -мезонов ядрами связанного в соединении X водорода. Методика измерений описана в работе<sup>727</sup> и вкратце состоит в следующем. Быстрые пионы тормозятся в сцинтилляторах счетчиков  $C_1, C_2$  и  $C_3$  и тормозном фильтре Ф переменной толщины и попадают в мишень М /см. *рис.* 1/. Средняя энергия попадающих в мишень пионов /т.е. средний пробег пионов в веществе/ определяется толщиной R фильтра Ф.  $\gamma$ -кванты регистрируются черенковскими спектрометрами полного поглощения  $4_1$  и  $4_2$ . В опытах измеряются скорости счета  $\gamma\gamma$ -совпадений в зависимости от толщины R фильтра для мишени X со связанным водородом,  $N_{\gamma\gamma}^x$ (R).

Значения  $N_{\gamma\gamma}^{x}(R)$  можно представить в виде суммы кривой остановок и пьедестала фона  $h_{x}(R)$ :

$$N_{\gamma\gamma}^{x}(R) = A_{x}n_{0}^{x}(R) + h_{x}(R),$$
 /2/

3



Рис.1. Схема опыта по изучению захвата  $\pi^-$ -мезонов ядрами связанного в веществе водорода  $^{/2/}C_1, C_2 u C_3$ - сцинтилляционные счетчики,  $\Phi$  - тормозной фильтр, Pb - защита из свинца, M - мишень,  $4_1 u 4_2$ - черенковские спектрометры полного поглощения.

где  $n_0^x(R)$  - число остановок пионов в мишени X. Определяемый из опыта параметр  $A_x$ связан с вероятностью  $W_x$  соотношением

$$A_{x} = W_{x} \omega_{\pi^{0}} \epsilon_{x}, \qquad /3/$$

где  $\omega_{\pi^0} = 0,60$  - вероятность реакции /1/,  $\epsilon_x$  - эффективность регистрации  $\pi^0$  -мезонов. Значение  $\epsilon_x$  меняется слабо<sup>/2/</sup> от мишени к мишени. Вероятность  $W_x$  определяется относительным методом, сравнением со стандартной мишенью<sup>/2/</sup> M<sub>0</sub>, чаще всего гидридом лития /  $W_{1,jH} = 0,035 \pm 0,004/:$ 

$$W_{x} = W_{0} \frac{A_{x}}{A_{0}}$$
 (4/

при условии, что измерения X и M<sub>0</sub> проводились при одинаковых экспериментальных условиях.

Число остановок пионов в мишени X есть интеграл функции распределения  $f(\mathbb{R})$  пионов по пробегу в веществе /кривая пробегов/ по тормозной толщине  $\Delta_x$  мишени:

$$n_0^{\mathbf{x}}(\mathbf{R}) = \int_{\mathbf{R}}^{\mathbf{R}+\Delta_{\mathbf{x}}} f(\mathbf{R}') d\mathbf{R}'.$$
 /5/

Тормозная толщина  $\Delta_x$  мишени в формуле /5/ должна быть определена в единицах толщины R тормозного фильтра.

## 2. ВЫЧИСЛЕНИЕ ЭКВИВАЛЕНТНЫХ ТОРМОЗНЫХ ТОЛЩИН МИШЕНЕЙ

Мишени X и Y являются эквивалентными по тормозной толщине, если максимальные энергии пионов, которые еще останавливаются в них, одинаковы. Это определение позволяет нам выразить тормозную толщину мишени в единицах толщины любого другого вещества. Единицей измерения часто выбирают *г*.см<sup>-2</sup>С /углерода/.

Пусть толщина мишени X будет  $\lambda_x \ r.cm^{-2}$  X. Наша задача вычислить эквивалентную толщину в единицах вещества Y. Допустим, что максимальную начальную энергию  $E_x$  останавливающихся в мишени X пионов можно определить по некоторому уравнению

$$\lambda_{\mathbf{x}} = \mathcal{F}(\mathbf{E}_{\mathbf{x}}, \mathbf{P}_{\mathbf{x}}), \qquad /6/$$

где  $P_x$  - набор параметров, характеризующих тормозную способность мишени Х. После решения уравнения /6/ для  $E_x$  значение  $\Delta_x$  вычисляется по формуле /6/ при замене  $\lambda_x$  и  $P_x$  на  $\Delta_x$  и  $P_y$ :

$$\Delta_{\mathbf{x}} = \mathcal{F} \left( \mathbf{E}_{\mathbf{x}}, \mathbf{P}_{\mathbf{y}} \right)$$
 /7/

в единицах *г.см*<sup>2</sup> вещества Ү.

В программе РІСНЕМ тормозная толщина  $\Lambda_x$  мишени X с известными толщиной  $\lambda_x$  и химическим составом  $(Z_1)_{n_1}(Z_2)_{n_2}$ . вычисляется подпрограммой RANGE. В качестве уравнения /6/ используется интерполяционная формула<sup>/3/</sup>

$$\log \lambda_{x} = \log \langle \frac{A}{Z} \rangle_{x} + \sum_{m,n=0}^{3} \alpha_{mn} (\log I_{x})^{m} (\log E_{x})^{n}, \qquad /8/$$

где  $\langle \frac{A}{Z} \rangle_x = \frac{\sum_i n_i A_i}{\sum_i n_i Z_i}$  - среднее значение отношения атомный

вес/атомный номер для мишени X;  $a_{mn}$  - коэффициенты интерполяции и I<sub>x</sub> - средний потенциал возбуждения соединения X, определяемый по формуле

$$\log I_{x} = \frac{\sum_{i} n_{i} Z_{i} \log I_{i}}{\sum_{i} n_{i} Z_{i}} .$$
 /9/

Средний потенциал возбуждения атомов I<sub>i</sub> является параметром теории замедления заряженных частиц в веществе, определяется экспериментально и табулирован в справочниках<sup>/3/</sup>. Его можно также вычислить по эмпирической формуле:

$$I_{i} = \begin{cases} 12 Z_{i} + 7; & Z_{i} \le 13, \\ 9,76 Z_{i} + 58,8 Z_{i}^{-0,19}; & Z_{i} > 13, \end{cases} /10/$$

в единицах эВ.

Уравнение /8/ описывает средний пробег протонов в веществе; при пользовании им для пионов следует умножить  $\lambda_x$  на нормировочный фактор М<sub>π</sub>-/M<sub>p</sub> =O,14878. По оценкам работы<sup>/3/</sup>, точность полученных по уравнению /8/ пробегов не хуже 1-2%.

Как показывает сравнение формул /6/ и /8/, тормозная способность мишени-Х характеризуется параметрами  $P_x = (<\frac{A}{Z}>_x I_x)$ . Для удобства пользователей, однако, программе нужно задавать лишь химический состав и толщииу  $\lambda_x$  мишени, а коэффициенты  $a_{mn}$ , атомные веса  $A_i$  и средние потенциалы возбуждения  $I_i$ атомов хранятся в общих массивах и заполняются автоматически в начале работы программы. В подпрограмме RANGE уравнение /8/ для определения значения  $E_x$  решается методом деления интервала пополам. Отметим, что эквивалентные тормозные толщины мишеней в наших опытах составляют 1,5-3,5 г.см<sup>-2</sup>С при полуширине кривой пробегов около 2,5 г.см<sup>-2</sup>С.

#### 3. ПРИНЦИПЫ РАБОТЫ ПРОГРАММЫ

Таким образом, экспериментальные данные, скорости счета уу-совпадений N<sup>x</sup><sub>VV</sub>(R) аппроксимируются функцией

$$N_{\gamma\gamma}^{\mathbf{x}}(\mathbf{R}) = A_{\mathbf{x}} \int_{\mathbf{R}}^{\mathbf{R} + \Delta_{\mathbf{x}}} f(\mathbf{R}') d\mathbf{R}' + h_{\mathbf{x}}(\mathbf{R}).$$
 /11/

При таком виде функции  $N_{\gamma\gamma}^{x}(R)$  изменение тормозной толщины  $\Delta_{x}$  мишени влияет только на предел интегрирования /при возможном изменении фона  $h_{x}(R)$  /. Изменение толщины кюветы, в которой находится мишень X при измерении, влияет лишь на эффективное значение R, вызывая смещение максимума кривой остановок на разницу эквивалентных тормозных толщин кювет.

Настройкой аппаратуры можно добиться<sup>/2/</sup>, чтобы пьедестал фона h<sub>"</sub>(R) был линейной /или близкой к линейной/ функцией

$$h_{x}(R) = b_{x} + c_{x}R$$
, /12a/

но в программе предусмотрена также возможность аппроксимации параболической функцией:

$$h_{x}(R) = b_{x} + c_{x}R + d_{x}R^{2}.$$
 /126/

В программе предусмотрено использование следующих возможных функций распределения пучка по пробегу f(R): простой гауссиан

$$f(R;\sigma_0,R_0) = \frac{1}{\sqrt{2\pi}\sigma_0} \exp\{-\frac{(R-R_0)^2}{2\sigma_0^2}\}.$$
 (13/

асимметричный гауссиан

6

7

$$f(R;\sigma_{1},\sigma_{2},R_{0}) = \begin{cases} \frac{2}{\sqrt{2\pi}(\sigma_{1}+\sigma_{2})} \exp\{-\frac{(R-R_{0})^{2}}{2\sigma_{1}^{2}}\}, & R \leq R_{0}; \\ \frac{2}{\sqrt{2\pi}(\sigma_{1}+\sigma_{2})} \exp\{-\frac{(R-R_{0})^{2}}{2\sigma_{2}^{2}}\}, & R > R_{0} \end{cases}$$

и сумма двух функций типа /13/

$$f(R; \sigma_1, \sigma_2, R_1, R_2, \delta) = (1 - \delta) \frac{1}{\sqrt{2\pi\sigma}} \exp\{-\frac{(R - R_1)^2}{2\sigma_1^2}\} + \delta \frac{1}{\sqrt{2\pi}\sigma_2} \exp\{-\frac{(R - R_2)^2}{2\sigma_2^2}\}.$$
(15/

В формуле /13/  $R_0$  обозначает средний пробег /среднюю энергию в единицах тормозного фильтра/ мезонов в пучке, а  $\sigma_0$  - средний разброс мезонов по пробегу. Для тонкой мишени кривая остановок совпадает с кривой пробегов, так что  $R_0$ совпадает с центром максимума остановок пионов и полуширина кривой равна  $\Gamma_0 = 2,355 \sigma_0$ . Функции /14/ и /15/ введены для учета того, что в зависимости от условий формирования пучка пионов кривая пробегов f(R) может иметь различный вид.

Аппроксимация экспериментальных данных означает многократное вычисление функции /11/. Во избежание численного интегрирования, которое на ЭВМ выполняется медленно, формулу /11/ с помощью /13/ перепишем в виде

$$N_{\gamma\gamma}^{\mathbf{x}}(\mathbf{R}) = \frac{A_{\mathbf{x}}}{2} \left[ \operatorname{erf}\left(\frac{\mathbf{R} - \mathbf{R}_0 + \Delta_{\mathbf{x}}}{\sigma_0 \sqrt{2}}\right) - \operatorname{erf}\left(\frac{\mathbf{R} - \mathbf{R}_0}{\sigma_0 \sqrt{2}}\right) \right] + h_{\mathbf{x}}(\mathbf{R}), \qquad /16/$$

где eff x - функция ошибок:

erf x = 
$$\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} dt$$
, /17/

которая вычисляется на ЭВМ сравнительно быстро с помощью

стандартной подпрограммы. Аналогичные выражения можно получить и в случаях работы с функциями /14/ или /15/.

Для каждой мишени следует фитировать функцию /11/с двумя группами параметров: параметрами распределения пучка по пробегу f(R) /группа 1/ и параметрами, характерными для мишени, - параметрами фона и амплитуды A<sub>x</sub> /группа 2/.

Значения параметров группы 1 можно определить по измерениям с эталонной мишенью и зафиксировать для других. Однако пренебрежение информацией для параметров группы 1, содержащейся в других спектрах, неразумно и может вызвать заметные систематические ошибки в определении важного для нас параметра А<sub>х</sub>. По этой причине, кроме возможностей обработки спектров по отдельности, при свободных параметрах обенх групп, и обработки "с ограничением", при зафиксированных значениях параметров группы 1 в программе предусмотрена также возможность совместной обработки спектров с "общими" параметрами группы 1 и индивидуальными параметрами группы 2. Проблема совместной обработки спектров методом наименьших квадратов при нелинейных модельных функциях обсуждается подробно в работе<sup>/4/</sup> Отметим, что в случае смещения максимума кривой остановок /например, из-за стенки кюветы. в которой находится образец/ при совместной обработке и обработке с ограничением параметр R<sub>0</sub> можно фитировать по отдельности.

Подгонку спектров программа выполняет методом Гаусса-Ньютона с помощью стандартной подпрограммы FUMILI библиотеки программ ОИЯИ.

По ходу измерений стабильность аппаратуры часто проверяется путем контрольных измерений /например, измерение LiHB максимуме остановок/. Результаты этих контрольных измерений можно вводить вместе со спектрами, они учитываются в значениях и погрешностях  $W_x$ . После ввода всех данных сеанса эти контрольные значения представляются в форме гистограмм в зависимости от времени их измерения с помощью системы подпрограмм HBOOK <sup>/5/</sup>. Кроме стандартного измерения /чаще всего с LiH/, относительно которого оцениваются значения  $W_x$ , при запуске программы можно выбрать еще одно "исходное" измерение Y, и программа вычисляет отношения

$$p_{x} = \frac{W_{x}}{W_{y}} = \frac{A_{x}}{A_{y}}$$
 (18/

для всех измерений данного сеанса. Этой возможностью программы особенно удобно пользоваться при поисках, например, температурных эффектов.

В конечных значениях погрешностей  $\Delta W_x$  в  $\Delta p_x$  учитываются возможные систематические отклонения путем увеличения погрешностей для амплитуд  $A_x$ ,  $A_0$  и  $A_y$  по формуле  $^{767}$ 

$$\Delta A' = \Delta A \cdot \begin{cases} \sqrt{\chi_1^2}; & \chi_1^2 > 1 \\ 1; & \chi_1^2 \le 1 \end{cases}$$
 /19/

где  $\chi_1^2$  есть нормированное на одну степень свободы значение  $\chi^2$  полученное при аппроксимации формулой /11/ соответствующего спектра N<sub>VV</sub>(R).

# 4. СТРУКТУРА ПРОГРАММЫ И ПРИМЕР

#### ПРИМЕНЕНИЯ

Программа РІСНЕМ написана на языке ФОРТРАН и работает на ЭВМ CDC-6500. Программа состоит из главной части и следующих подпрограмм:

- ARITHM вычисление фитируемой функции и ее производных для подпрограммы FUMILI;
- HFIG строение гистограмм спектра вместе с фитированной функцией при помощи системы подпрограмм HBOOK <sup>/5/</sup>;
- LF фитирование с линейными параметрами по методу наименьших квадратов;

RANGE - вычисление тормозных толщин мишеней. Имеются также вспомогательные подпрограммы CALF, FUNC, IN, PRT, RLAM, TOLT, WTN и PERSYS.

Работа программы проходит следующие стадии. После ввода управляющих данных /название эксперимента, условия обработки и др./ вводится информация для мишени Х. Вычисляется тормозная толщина мишени  $\Delta_x$  в единицах толщины тормозного

фильтра, и вводится измеренная кривая остановок мезонов. При необходимости выполняется отдельная обработка спектра /при малой статистике, например, не стоит отдельно обрабатывать/, и в зависимости от типа обработки, заданного пользователем, спектр загружается в общие массивы для совместного фита и фита с ограничением /при зафиксированных параметрах распределения пучка по пробегу/. Для каждого фитирования печатаются данные о мишени, оценки и погрешности параметров. а также гистограмма спектра вместе с фитированной функцией. После ввода спектров печатается гистограмма контрольных измерений /если таковые были введены/ и выполняется совместное фитирование и фитирование с ограничением. В последнем случае параметры распределения пучка фиксируются на значениях, полученных в результате совместной подгонки. Эти сталии обработки также сопровождаются последующим печатанием результатов и гистограмм. В конце обработки программа печатает все результаты опыта в суммарных таблицах.

В качестве примера приведем обработку одного из опытов 777 Измерялась вероятность захвата 7 - мезонов ядрами связанного в воде водорода при различных температурах и одинаковых геометрических и аппаратурных условиях. На рис. 2 приведены экспериментальные спектры - скорости счета УУ -совпадений в воде N<sub>VV</sub>(R) в зависимости от толщины R тормозного фильтра, с учетом уменьшения тормозной толщины  $\Delta_{\rm H_{2}O}$  мишени от температурного расширения воды. Сплошными кривыми показаны кривые типа /11/, полученные при совместном фитировании спектров симметричным гауссианом /13/ и линейным пьедесталом фона /12а/. Наклон пьедестала увеличивается с уменьшением отношения масс воды и кюветы. Мерой увеличения вероятноспри увеличении температуры Т служила величина т∎ ₩ НоО р, вычисленная программой по формуле /18/, где в качестве "реперной" мишени У использовалась вода при комнатной температуре.

В заключение автор пользуется случаем выразить благодарность В.И.Петрухину, В.Н.Покровскому, В.Е.Рисину, В.М.Суворову и Б.А.Хоменко за помощь в работе.

10

. 11



Рис.2. Скорости счета уу -совпадений,  $N_{\gamma\gamma}(R)$ , в зависимости от полщины R пормозного фильтра в воде при различных температурах. Значения нормированы на одинаковые тормозные толщины мишеней. Сплошные линии получены при совместной anпроксимации с функцией /16/, штрихованные линии - пьедесталы фона.

## ЛИТЕРАТУРА

- 1. Герштейн С.С. и др. УФН, 1969, 97, с. 3.
- 2. Петрухин В.И. В кн.: Труды ІУ Международной конференции по физике высоких энергий и структуре ядра. Дубна, 1971. ОИЯИ, 1972, с. 431.
- 3. Barkas W.H., Berger M.J. In: Studies in Penetration of Charged Particles in Matter, NAS-NRC 1133, 1964, p. 103.

- 4. Horvath D. KFKI-73-53, 1973.
- 5. Brun R. et al. HBOOK User Guide. CERN, DD-75-11, 1975.
- 6. Martin B.R. Statistics for Physicists. Academic Press, London, 1971.
- 7. Качалкин А.К. и др. ОИЯИ, Р14-12236, Дубна, 1978.

Рукопись поступила в издательский отдел 6 февраля 1979 года.

12