СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ДУБНА

25/4-74

10 - 10340

Ван Сын Чан, К.А.Гриднев, Ю.В.Кангрополь, Л.В.Краснов, М.Мадея, Г.М.Осетинский

2-77

ПРОГРАММА

antenne it it unseenen

1551

<u>C343</u>a B-17

> ДЛЯ ВЫЧИСЛЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО СЕЧЕНИЯ, ПОЛЯРИЗАЦИИ И ВЕРОЯТНОСТИ СПИН-ФЛИПА ПРИ НЕУПРУГОМ РАССЕЯНИИ В ПРИБЛИЖЕНИИ **DWBA** И РЕЗОНАНСНОЙ ТЕОРИИ

10 - 10340

Ван Сын Чан, К.А.Гриднев, Ю.В.Кангрополь, Л.В.Краснов, М.Мадея, Г.М.Осетинский

ПРОГРАММА ДЛЯ ВЫЧИСЛЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО СЕЧЕНИЯ, ПОЛЯРИЗАЦИИ И ВЕРОЯТНОСТИ СПИН-ФЛИПА ПРИ НЕУПРУГОМ РАССЕЯНИИ В ПРИБЛИЖЕНИИ **DWBA** И РЕЗОНАНСНОЙ ТЕОРИИ

OSTORESCHEMINA WINCON INSTRUCTION DI MICHAEL EMETHICITEHA

Ван Сын Чан и др.

10 - 10340

Программа для вычисления дифференциального сечения, поляризации и вероятности спин-флипа при неупругом рассеянии в приближении DWBA и резонансной теории

Программа позволяет вычислять на ЭВМ типа М-20 сечение неупругого рассеяния частиц со спином 1/2 на четно-четных ядрах с возбуждением первого состояния 2⁺, а также поляризацию и вероятность спинфлипа этих частиц. В программе учитывается прямой процесс взаимодействия в приближении DWBA, резонансный процесс и интерференция между ними.

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Сообщение Объединенного института ядерных исследований Дубна 1976

О 1976 Объединенный инсяинуя ядерных исследований Дубна

Введение

В ряде последних экспериментальных работ изучается вопрос спин-флипа при взаимодействии частиц малых энергий с атомными ядрами.

Как известно, теоретическое рассмотрение спин-флипа основано на подходе к этому процессу как к прямому^{/1/} /что справедливо в области энергий выше 10-15 *МэВ*/ либо как к резонансному^{/2/}/при меньших энергиях/.

Однако очевидно, что существует область энергий, где вклады обоих процессов соизмеримы. С этой точки зрения желательно иметь возможность проводить расчеты вероятности спин-флипа с учетом интерференционных эффектов между прямым и резонансным взаимодействием.

Теория резонансных процессов в применении к расчетам процессов, связанных с конкретными состояниями ядер, весьма сложна, т.к. требует решения задачи детального описания природы свойств ядра и процесса. Поэтому имеет смысл развить упрощенный подход, в котором прямое взаимодействие учитывается в приближении DWBA, а резонансное - феноменологически, через параметризацию положения и ширин резонанса /формула Брейта-Вигнера/.

Данная работа посвящена описанию программы SFDR, написанной в кодах ЭВМ типа M-2O и предназначенной для вычисления дифференциального сечения неупругого рассеяния частиц со спином 1/2 на четно-четных, слабодеформированных ядрах с возбуждением первого состояния 2^+ , а также поляризации и вероятности спинфлипа этих частиц прямым образом (DWBA) и через резонанс /формула Брейта-Вигнера/. Амплитуда неупругого рассеяния в приближении DWBA

Амплитуда рассеяния в приближении DWBA может быть записана в виде /3/:

$${}^{D}F_{J_{A}J_{B}}^{mm}{}^{m}{}^{a} = -\frac{\mu}{2\pi\hbar}\sum_{\ell Sj} A_{\ell Sj} (2j+1)^{\frac{1}{2}} (J_{A}jM_{A}M_{B}-M_{A}|J_{B}M_{B})\beta \frac{\ell_{mm}}{Sj},$$

где $\mu = M_{\rm H} M_{\rm q} / (M_{\rm H} + M_{\rm q})$ - приведенная масса; $J_{\rm A}$ - спин ядра мишени во входном канале; $J_{\rm B}$ - спин ядра мишени в выходном канале; $A_{\ell S_j}$ - спектроскопический множитель; $B_{\rm Sj}^{\ell_{\rm mm}} {}_{\rm b}{}^{\rm m_a}$ - приведенная амплитуда; S переданный ядру спиновой момент $/\bar{\rm S}=\bar{\rm S}_{\rm a}-\bar{\rm S}_{\rm b}$, где $\bar{\rm S}_{\rm a}$ и $\bar{\rm S}_{\rm b}$ - спины налетающей и вылетающей частиц с проекциями m_a и m_b соответственно/; ℓ - переданный ядру орбитальный момент с проекцией m.

В случае четно-четного ядра мишени $J_A = 0$ и

$${}^{D}F \frac{{}^{mm}b{}^{m}a}{J_{B}} \equiv {}^{D}F \frac{{}^{mm}b{}^{m}a}{0J_{B}} = -\frac{\mu}{2\pi\hbar} \sum_{\ell S} \hat{J}_{B} A_{\ell S J_{B}} \frac{{}^{\ell mm}b{}^{m}a}{\beta_{S J_{B}}}$$

где $\hat{J}_{B} = (2J_{B} + 1)^{\frac{1}{2}}$.

В нашем случае $S_a = S_b = 1/2$. Поэтому для S возможны два значения: О н 1. Если предположить, что нуклон-нуклонные силы не зависят от спинов, то возможно только S=0. В этом случае $\ell = J_B$. Для большинства четно-четных ядер первое возбужденное состояние имеет спин, равный 2, поэтому для амплитуды при $J_B = 2$ имеем

$$F_2^{mm_bm_a} = -\frac{\mu\sqrt{5}}{2\pi\hbar} A_{202} \beta_{02}^{2mm_bm_a} .$$

Для приведенной амплитуды при $J_a = L_a + 1/2$ и $J_b = L_b + 1/2$, где L_a и L_b - орбитальные моменты налетающей и вылетающей частиц соответственно, имеем:

 $\beta^{mm a^{m} b} \equiv \beta^{2mm a^{m} b}_{02} = \sum_{L_{a} L_{b} J_{a} J_{b}}^{mm b^{m} a} \prod_{L_{b} L_{a} J_{b} J_{b}} \int_{J_{a} J_{b}}^{mm b^{m} a} \int_{J_{a} J_{b} J_{a}} \int_{J_{a} J_{b}}^{m} \int_{J_{a} J_{b} J_{a}}^{m} P_{L_{b} J_{b}}^{m} (\theta) .$

Эдесь ось z выбрана вдоль p_a - импульса налетающей частицы, а ось у - вдоль [p_a×p_b],где p_b - импульс вылетающей частицы.

Коэффициенты Г, связывающие угловые моменты, равны

$$\times (L_{b} 200 | L_{a} 0)(L_{b} \frac{1}{2} - mm_{b} | J_{b} m_{b} - m) \times$$

$$\times (L_{a} \frac{1}{2} 0m_{a} | J_{a} m_{a}) \begin{pmatrix} 2 & 2 & 0 \\ J_{a} L_{a} \frac{1}{2} \\ J_{a} L_{b} \frac{1}{2} \end{pmatrix}.$$

Это выражение для β справедливо при m ≥ 0 . При отрицательных m приведенную амплитуду можно найти из соотношения симметрии

$$\beta^{mm_am_b}_{a} = (-1)^m \beta^{-m-m_a - m_b} \qquad (m \ge 0)$$

Радиальные интегралы f_{LbLa}JbJ_а имеют следующий вид:

$$f_{L_{b}L_{a}J_{b}J_{a}} = \frac{2\pi^{\frac{1}{2}}}{k_{a}k_{b}} \int_{0}^{\infty} \chi_{L_{b}J_{b}}^{(b)}(k_{b}r) \mathcal{F}_{202} (r) \chi_{L_{a}J_{a}}^{(a)}(k_{a}r) dr,$$

4

где k_a и k_b являются волновыми числами входной и выходной частиц соответственно (k = $(2\mu E)^{\frac{1}{2}}/h$). Канальные волновые функции $\chi { { (n \atop L}) { (k \atop n} r) }$ являются

Канальные волновые функции $\chi {}_{LJ}^{(n)}(k_n r)$ являются решением уравнения Шредингера с оптическим потенциалом:

$$\frac{d^2}{dr^2} + k_n^2 - \frac{L(L+1)}{r^2} - \frac{2\mu}{h^2} V_{LJ}^{(n)}(\mathbf{r}) |\chi|_{LJ}^{(n)}(\mathbf{k}_n \mathbf{r}) = 0.$$

Для больших r, когда ядерным потенциалом можно пренебречь, $\chi_{\rm LJ}^{\rm (n)}$ имеют вид

$$\chi_{L,J}^{(n)} = \frac{i}{2} - e^{i\sigma L} \left[\left(F_L(\mathbf{k}_n \mathbf{r}) - iG_L(\mathbf{k}_n \mathbf{r}) \right) - S_{L,J}^{(n)} \left(F_L(\mathbf{k}_n \mathbf{r}) + iG_L(\mathbf{k}_n \mathbf{r}) \right) \right],$$

где $\sigma_{\rm L}$ - кулоновские фазы; ${\rm F}_{\rm L}$ и ${\rm G}_{\rm L}$ - регулярная и иррегулярная кулоновские функции соответственно; ${\rm S}_{\rm LJ}^{(n)}$ - матрица рассеяния.

Оптический потенциал имеет обычный вид:

$$V_{LJ}^{(n)}(\mathbf{r}) = V_{C}^{(n)}(\mathbf{r}) + U_{So}^{(n)} f(\mathbf{x}_{U}^{(n)}) - \frac{1}{r} \frac{d}{d\mathbf{r}} f(\mathbf{x}_{V_{So}}^{(n)}) + \frac{1}{r} \frac{d}{d\mathbf{r}} f(\mathbf{x}_{V_{So}}^{(n)}) + \frac{1}{r} \frac{d}{r} f(\mathbf{x}_{V_{So}}^{(n)}) + \frac{1}{r} \frac{d}{r} f(\mathbf{x}_{W_{So}}^{(n)}) + \frac{1}{r} \frac{d}{r} f(\mathbf{x}_{W_{So}}^{(n)}) - \frac{1}{r} \frac{d}{r} f(\mathbf{x}_{W_{So}}^{(n)}) - \frac{1}{r} \frac{d}{r} f(\mathbf{x}_{W_{So}}^{(n)})],$$

где

$$f(x) = [1 + exp(x)]^{-1} ,$$

$$g(x) = \begin{cases} exp(-x)^{2} , \\ 4exp(x) \cdot [1 + exp(x)]^{-2} \end{cases} ,$$

$$\mathbf{x}_{i}^{(n)} = \frac{\mathbf{r} - \mathbf{R}_{i}^{(n)}}{\mathbf{a}_{i}^{(n)}} , \quad \mathbf{R}_{i}^{(n)} = \mathbf{r}_{0i}^{(n)} \cdot \mathbf{A}^{1/3} ,$$

$$\mathbf{V}_{C}^{(n)} = \begin{cases} \frac{\mathbf{Z}_{\mathbf{A}} \mathbf{Z}_{\mathbf{q}} \mathbf{e}^{2}}{\mathbf{r}} , & \mathbf{r} > \mathbf{r}_{0C}^{(n)} \cdot \mathbf{A}^{1/3} , \\ \frac{\mathbf{Z}_{\mathbf{g}} \mathbf{Z}_{\mathbf{q}} \mathbf{e}^{2}}{\mathbf{2r}_{0C}^{(n)} \mathbf{A}^{1/3}} [3 - (\frac{\mathbf{r}}{\mathbf{r}_{0C}^{(n)} \mathbf{A}^{1/3}})^{2}] , \quad \mathbf{r} \le \mathbf{r}_{0C}^{(n)} \mathbf{A}^{1/3} . \end{cases}$$

Здесь r_{0i} - константа для вычисления радиуса соответствующего потенциала; a_i - диффузность; A - атомный вес ядра мишени; z_g и z_q - заряд ядра мишени и налетающей частицы соответственно. Для слабодеформированного ядра мишени A $_{202}$ совпадает с параметром деформации, а радиальная часть остаточного взаимодействия \mathcal{F}_{202} (r) будет равна

$$\begin{aligned} \mathcal{G}_{202}(\mathbf{r}) &= U^{OCT} R_1^{OCT} \frac{d}{d\mathbf{r}} f(\mathbf{x}_U^{OCT}) + \\ &+ \frac{3}{5} Z_{g} Z_{g} Z_{g} e^{2} \left[\frac{\mathbf{r}^2}{(R_c^{OCT})^3} \theta(R_c^{OCT} - \mathbf{r}) + \frac{(R_c^{OCT})}{\mathbf{r}^3} \theta(\mathbf{r} - \mathbf{k}_c^{OCT}) \right] + \\ &+ i \left[W_{0\bar{0}}^{OCT} R_2^{OCT} \frac{d}{d\mathbf{r}} f(\mathbf{x}_{W_{0\bar{0}}}^{OCT}) + W_{\Pi OB}^{OCT} R_3^{OCT} \frac{d}{d\mathbf{r}} g(\mathbf{x}_{W_{\Pi OB}}^{OCT}) \right], \end{aligned}$$

где

$$\mathbf{x}_{i}^{\text{OCT}} = \frac{\mathbf{r} - \mathbf{R}_{i}^{\text{OCT}}}{\mathbf{a}_{i}^{\text{OCT}}}, \quad \mathbf{R}_{i}^{\text{OCT}} = \mathbf{r}_{0i}^{\text{OCT}} \cdot \mathbf{A}^{1/3},$$
$$\theta(\mathbf{x}) = \begin{cases} 1, \ \mathbf{r} > 0, \\ 0, \ \mathbf{r} < 0 \end{cases}.$$

Здесь предполагается отсутствие деформации у спинорбитального взаимодействия.

Амплитуда резонансного неупругого рассеяния

В том случае, если неупругое рассеяние с возбуждением состояния 2⁺ четно-четного ядра мишени идет через резонанс при энергии E_R , спине J_R и орбитальном моменте L_R , амплитуда может иметь вид /4/

$${}^{RES}F_{2L_{R}J_{R}}^{mm_{b}m_{a}} = -(4k_{a}k_{b})^{-\frac{1}{2}}\sum_{L_{b}J_{b}}\hat{L}_{R}\hat{L}_{b}\left[\frac{(L_{b}-m)!}{(L_{b}+m)!}\right]^{\frac{1}{2}}$$

 \times

*

$$\times (L_{R}^{\frac{1}{2}} 0m_{a} + J_{R}m_{a}^{m}) (L_{b}^{\frac{1}{2}} - mm_{b} + J_{b}m_{b} - m) \times$$

$$\times (2J_{b}m_{a} - m_{b} + mm_{b} - m + J_{R}m_{a}) S_{L_{b}}^{L_{B}} J_{b} + P_{L_{b}}^{m} (\theta) ,$$

$$\frac{RES}{2L_{R}} F_{2L_{R}}^{mm_{b}m_{a}} = (-1)^{m} F_{2L_{R}}^{-m-m_{b}-m_{a}}, \quad m \ge 0 .$$

Здесь оси координат выбраны так же, как и для прямого процесса.

Для S имеем

где Е_а- энергия налетающей частицы; Г^{L_RJ_R} - полная ширина резонанса; Г^{L_RJ_R} - входная ширина резонанса; $\Gamma_{p'L_{b}J_{b}}^{L_{R}J_{R}}$ - выходная парциальная ширина резонанса;

ф_{Lb} J_b- фазы.

При наличии нескольких достаточно изолированных резонансов

 ${}^{RES}F_2 {}^{mm}{}^{bm}a_{}^{a} = \sum_R F_2 {}^{mm}{}^{bm}a_{}^{L}L_R J_R .$

Сечение, поляризация и спин-флип

Полная амплитуда процесса неупругого рассеяния с возбуждением состояния 2^+ ядра мишени, идущего как прямым образом, так и через резонансы, будет иметь вид

$$\mathbf{F}_{\mathbf{a}}^{\mathbf{m}\mathbf{m}\mathbf{b}\mathbf{m}\mathbf{a}} \mathbf{F}_{\mathbf{a}}^{\mathbf{m}\mathbf{m}\mathbf{b}\mathbf{m}\mathbf{a}} \mathbf{F}_{\mathbf{a}}^{\mathbf{n}\mathbf{m}\mathbf{b}\mathbf{m}\mathbf{a}} \mathbf{F}_{\mathbf{a}}^{\mathbf{n}\mathbf{m}\mathbf{b}\mathbf{m}\mathbf{a}}$$

Для дифференциального сечения, поляризации ($P(\theta)$) и спин-флипа ($S(\theta)$) имеем

$$\frac{d\sigma(\theta)}{d\Omega} = \frac{1}{2} \frac{k_{b}}{k_{a}} \sum_{mm_{b}m_{a}} |F_{2}^{mm_{b}m_{a}}|^{2},$$

$$P(\theta) = \frac{2 \sum_{mm_{b}m_{a}} [1 - (m_{b} + \frac{1}{2})^{2}] \int_{m} (F_{2}^{mm_{b}m_{a}} F_{2}^{m+1m_{b} + 1m_{a}^{*}})}{\sum_{mm_{b}m_{a}} |F_{2}^{mm_{b}m_{a}}|^{2}},$$

$$S(\theta) = \frac{1}{2} \frac{\sum_{mm_{b}m_{a}} F_{2}^{mm_{b}m_{a}} [F_{2}^{mm_{b}m_{a}^{*}} + (-1)^{m+m_{a} + m_{b}} F_{2}^{-mm_{b}m_{a}^{*}}]}{\sum_{mm_{b}m_{a}} |F_{2}^{mm_{b}m_{a}}|^{2}}.$$

8

Описание программы

 Вычисление волновых функций канала

Дифференциальное уравнение, которому удовлетворяет волновая функция канала, в общем виде может быть записано следующим образом:

 $\frac{\mathrm{d}^2 \chi}{\mathrm{d}\mathbf{r}^2} + \phi(\mathbf{r})\chi(\mathbf{r}) = 0.$

Для решения этого уравнения применяется метод Нумерова. Обозначим через χ_n и ϕ_n значения функции при $r=n\cdot h$, где h - шаг интегрирования. Тогда

$$\overline{\chi}_{n+1} + \overline{\chi}_{n-1} = \frac{(2 + \frac{5}{6}h^2\phi_n)}{(1 - \frac{1}{12}h^2\phi_n)}\overline{\chi}_n + O(h^6),$$

где

$$\bar{\chi}_{n} = \chi_{n} \cdot (1 - \frac{1}{12}h^{2}\phi_{n})$$
.

Применяя это соотношение с начальными условиями $\bar{\chi} = 0$ и $\bar{\chi}_1 = \epsilon / \epsilon$ - достаточно мало/, можно найти волновую функцию с точностью до постоянного множителя. Для получения $\chi(\rho)$ с необходимой точностью h должно быть порядка O,1.

Нормировка волновых функций канала производится при сшивании с асимптотическим граничным условием.

2. Вычисление кулоновских функций F_ρ(ρ) и G_ρ(ρ) и кулоиовских фаз σ_β

Мы будем следовать методам, описанным в работе /5/. Для кулоновских фаз имеем рекуррентное соотношение:

 $\sigma_{\ell}(\gamma) = \sigma_{\ell+1}(\gamma) - \alpha,$

где

$$\gamma = \frac{\mu Z_{\pi} Z_{q} e^{2}}{k\hbar}, \quad \alpha = \operatorname{arctg}(\frac{\gamma}{\ell+1}).$$

Для достаточно больших $\ell \sigma_{\ell}(y)$ удовлетворяют также асимптотическому выражению

$$\sigma_{\ell}(\gamma) = \alpha(\ell + \frac{1}{2}) + \gamma(\ell n\beta - 1) + \frac{1}{\beta} \cdot \delta,$$

$$\beta = \left[\gamma^2 + (\ell + 1)^2 \right]^{\frac{1}{2}} .$$

где

$$\delta = -\frac{\sin \alpha}{12} + \frac{\sin 3\alpha}{360\beta^2} - \frac{\sin 5\alpha}{1260\beta^4} + \frac{\sin 7\alpha}{1680\beta^6} - \dots$$

Вычисляя σ_{ℓ} из асимптотической формулы для $\ell = \ell_{max} / \ell_{max} \sim 50/$ и применяя рекуррентное соотношение, можно найти σ_{ℓ} для всех значений ℓ .

Кулоновские функции $F_{\ell}(\rho)$ и $G_{\ell}(\rho)$ удовлетворяют дифференциальному уравнению

$$\frac{d^{2} U_{\rho}(\rho)}{d\rho^{2}} + (1 - \frac{2\gamma}{\rho} - \frac{\ell(\ell + 1)}{\rho^{2}}) U_{\ell}(\rho) = 0$$

и рекуррентным соотношениям

$$\frac{\left[\gamma^{2} + (\ell+1)^{2}\right]^{\frac{1}{2}}}{\ell + 1} U_{\ell} + \frac{\left[\gamma^{2} + \ell^{2}\right]^{\frac{1}{2}}}{\ell} U_{\ell-1}(\rho) =$$

$$= (2\ell + 1)\left(\frac{\gamma}{\ell(\ell + 1)} + \frac{1}{\rho}\right)U_{\ell}(\rho) ,$$

$$\left(\frac{\gamma}{\ell + 1} + \frac{\ell + 1}{\rho}\right)U_{\ell}(\rho) - U_{\ell}'(\rho) = \frac{\left[\gamma^{2} + (\ell+1)^{2}\right]^{\frac{1}{2}}}{\ell + 1} U_{\ell+1}(\rho) .$$

Регулярные функции Fg находятся методом Миллера.

Для этого $F_{\ell_{\max}+1}(\rho)$ полагается равным O, а $a \cdot F_{\ell_{\max}}(\rho) = \epsilon$. Здесь ℓ_{\max} берется достаточно большим $/\ell_{\max} \sim 50/$, ϵ - величина порядка 10⁻⁵, а a подлежит определению.

Используя рекуррентное соотношение, можно найти $aF_{\ell}(\rho)$ и $aF_{\ell}(\rho)$ для нужных значений ℓ . Константа *а* находится из вронскиана

$$F'_{0}(\rho) G_{0}(\rho) - F_{0}(\rho)G'_{0}(\rho) = 1.$$

Функции $G_0(\rho)$ и $G_0'(\rho)$ находятся на основе решения методом Рунге-Кутта дифференциального уравнения с начальными условиями

$$G_{0} = s \cos \phi - t \sin \phi , \qquad G_{0} = S \cos \phi - T \sin \phi ,$$

$$\phi = \rho_{m} - \gamma \ln 2 \rho_{m} + \sigma_{0} ,$$

справедливыми для достаточно больших ρ_m . Величины s, S, , t и T удовлетворяют соотношению sT-St=1 и могут быть найдены следующим образом:

$$s = \sum_{n=0}^{25} s_n, \quad S = \sum_{n=0}^{25} S_n, \quad t = \sum_{n=0}^{25} t_n, \quad T = \sum_{n=0}^{25} T_n,$$

$$s_{n+1} = a_n s_n - b_n t_n, \quad t_{n+1} = a_n t_n + b_n s_n,$$

$$S_{n+1} = a_n S_n - b_n T_n - \frac{S_{n+1}}{\rho_m}, \quad T_{n+1} = a_n T_n + b_n S_n - \frac{t_{n+1}}{\rho_m},$$

$$a_n = \frac{\gamma (2n+1)}{2\rho_m (n+1)}, \quad b_n = \frac{\gamma^2 - n(n+1)}{2\rho_m (n+1)},$$

$$s_0 = 1, \quad s_1 = \frac{\gamma}{2\rho_m}, \quad t_0 = 0, \quad t_1 = \frac{\gamma^2}{2\rho_m},$$

$$S_0 = 0, \quad S_1 = \frac{\gamma^3 - \gamma}{2\rho_m^2} - \frac{\gamma^2}{2\rho_m}, \quad T_0 = 1 - \frac{\gamma}{\rho_m}, \quad T_1 = -\frac{\gamma^2}{\rho_m^2} + \frac{\gamma}{2\rho_m}.$$

Кулоновские функции $G_{\ell}(\rho)$ находятся из рекуррентных соотношений и значений $G_{0}(\rho)$ и $G_{0}(\rho)$.

Структура программы

Программа SFDR имеет блочную структуру и состоит из следующих частей: "Упр.", "Кулон", " χ_{LJ} ", "Сшив", "А", " σ "и "Res.".

Блок "Упр." управляет последовательностью работы остальных блоков. В "Кулоне" вычисляются значения кулоновских функций в точках сшивания и кулоновские фазы. Блок " χ_{LJ} " вычисляет канальные волновые функции χ_{LJ} и интегралы перекрытия. Нормировка интегралов производится в блоке "Сшив". Часть программы под названием "А"получает величины mm h m -

$$L_bL_aJ_bJ_afL_bL_aJ_bJ_a$$
.

Блок "Res" ответственен за вычисление резонансной амплитуды. Окончательные результаты /сечение, поляризация и вероятность спин-флипа/ получаются в процессе работы блока "σ".

При работе программы SFDR используются MO3У-O,1 и магнитные барабаны с номерами O и 1. Система ИС-2М и библиотека стандартных программ должны быть записаны на O-ю или 3-ю четверти блока MБ-OO. При вычислении по программе ввод резонансных параметров и учет их будут производиться только при включенном 44-ом разряде КЗУ-3.

Входная информация

Входная информация состоит в случае учета резонансного взаимодействия из двух массивов.

Первый массив

Номер ячейки	Назва- ние	Описание параметра	
20	E _a	энергия налетающей частицы в л.с.к. / МэВ/	
21 22	Q M A	энергия реакции / МэВ/ масса ядра мишени	

23	$\mathbf{Z}_{\mathbf{A}}$	заряд ядра мишени				
24	0	нуль	51	r ov	радиальный параметр / Фм/	дейст-
25	MA		52	av	диффузность / Фм/	витель-
	_ }	смотри выше		50		ной части
26	Z _A)					спин-орби-
27	0	константа нуль				тального
Парам	етры оста	гочного взаимодействия				взаимо-
20	T I					действия
30	U	глубина / <i>МэВ</i> / действитель-	53	rowso	радиальный параметр / Фм,	
31 ,	r _o u	радиальный параметр ной части	54	awso	диффузность <i>/Фм/</i>	мнимой
30		/ΦΜ/				части
02	a _l ;	диффузность / <i>Фм</i> /				спин-орби-
33	W	глубина / <i>МэВ</i> /				тального
34	row	радиальный параметр (мнимой				взаимодей.
25		/Фм/ части				СТВИЯ
35	$\mathbf{a}_{\mathbf{W}}$	диффузность / Ф <i>м</i> / /	55	Т	константа, определяющая	вид мнимой
30	r 0 C	радиальный параметр /Фм/ для ку-			части оптического потенци	нала /Т=0 -
		лоновского остаточного взаимодей-			мнимая часть берется то	лько в виде
TLANA		СТВИЯ			потенциала СВ.; Т=1- ми	нимая часть
парам	етры опти	ческого потенциала			берется только в виде поте	енциала Га-
07	X 7	во входном канале			усса; Т=2 - мнимая час	ть берется
31 40	V	глубина / МэВ/ действительной части			только в виде производной	й от потен-
40	w _{об}	глубина / <i>МэВ</i> / мнимой части в виде			циала Саксона-Вудса; Т=	3 - мнимая
4.1	***	потенциала Саксона-Вудса /СВ./			часть берется в виде сумм	ы потенциа-
41	w _{пов}	глубина / <i>МэВ</i> / мнимой части в виде			лов Саксона-Вудса и Гау	ycca; $T = 4$ -
		производной от потенциала Саксона-			в виде суммы потенциал	ов СВ. и
4.0		Вудса или в виде потенциала Гаусса			производной от потенциала	СВ.
42	r 0 V	радиальный параметр действительной	_		-	
4.9		части / Фм/	Парам	етры оптич	еского потенциала в выходно	ом канале
43	r _{oc}	радиальный параметр /Ф <i>м</i> / кулонов-	56		параметры задаются втом	же порядке,
		ского взаимодействия	: (что и во входном канале	
44	a _V	диффузность <i>/ Фм</i> / действительной	. (
4 5		части	74)			
45	r _{0Wo} б	радиальный параметр <i>/Фм</i> / мнимой	75	ma	масса налетающей частиць	I
		части в виде потенциала СВ.	76	Za	заряд налетающей частицы	
40	а _{W_Oб}	диффузность <i>/Фм</i> / мнимой части в	77	0	константа нуль	
47	• •	виде потенциала Саксона-Вудса	100	0	_ " _	
4/	V_{so}	глубина / МэВ/ действительной части	101)	ma		
50	**)	спин-орбитального взаимодействия	} 5		смотри выше	
50	W _{so}	глубина / <i>МэВ</i> / мнимой части спин-	102	$\mathbf{Z}_{\mathbf{a}}$		
		орбитального взаимодействия				

103	0					
104	\	константы				
104	$\frac{2}{25}$					
106	L.	MAKCHMATLHOA VUHTUDA				
	⊶amax	максимальное учитываемое число пар-				
107	0	KOHCTAHTA				
110	R_{E}	ВЕРХНИЙ Прелед интегралов дерекрития				
	Ľ	$/oбычно R_{\rm F} = 15 \div 17 $ Фи/				
111	0		~			
2		константы				
112)	0					
113	row	радиальный параметр	мнимой части			
	eIIOB	/Фм/	оптического			
114	aw IIOB	диффузность <i>/Фм/</i>	потенциала во			
			входном ка-			
			нале в виде			
			потенциала			
			Гаусса или			
			производной			
			от потенциала			
115	_		СВ.			
115	^г оw _{пов}	радиальный параметр	мнимой части			
116	9.77	/ <i>ФМ</i> /	оптического			
	ажпов	диффузность / ФМ/	потенциала в			
		•	выходном ка-			
			нале в виле			
			потенциала Га-			
			усса или			
			производнои			
			от потенциала			
117	h	Шаг интегрирования /	C.B.			
		канала и канала (Фм/ уравнения Канала				
120	0	Константа				
121	$\Delta heta$	$\mathbb{H}_{\mathbf{A}} = \mathbb{H}_{\mathbf{A}} = $				
		ЧИСЛЕНИИ СЕЧЕНИЯ, ПОЛЯПИЗАНИИ и				
		спин-флипа	pasadan n			
122	θ_{\min}	начальный угол /в градусах/				
123	0max	конечный угол /в градусах/				
	ш а х		,			

124) 0,5 константы 125 0,5 Второй массив /при включенном 44-м разряде КЗУ-3/ Номер Обозна- Описание параметра ячейки чение 700 β^2 квадрат параметра деформации Параметры первого резонанса 701 L_{B} орбитальный момент резонанса 702 J_B спин резонанса ($J_{B} = L_{B} \pm 0,5$) 703 $\mathbf{E}_{\mathbf{B}}$ энергия резонанса / МэВ/ в л.с.к. 704 полная ширина / МэВ/ Г Γ_{p_0} 705 входная ширина / МэВ/ 706 парциальные выходные ширины резо-707 нанса в следующем порядке по ℓ_b и J_b : Γ_{p} , $\ell_{\rm b} = L_{\rm R} - 2$, $J_{\rm b} = \ell_{\rm b} - 0.5$; $\ell_{\rm b} = L_{\rm R} - 2$, $J_{\rm b} = \ell_{\rm b} + 0.5$; 710 711 $\ell_{b} = L_{R}, J_{b} = \ell_{b} - 0.5; \ell_{b} = L_{R}, J_{b} = \ell_{b} + 0.5;$ 712 $\ell_{\rm b} = L_{\rm R} + 2$, $J_{\rm b} = \ell_{\rm b} - 0.5$; $\ell_{\rm b} = L_{\rm R} + 2$, $J_{\rm b} = \ell_{\rm b} + 0.5$. 713 714 фазы в том же порядке, что и выход-715 ные ширины • 721 Параметры второго резонанса 722 в том же порядке, что и для первого • резонанса 742 Параметры третьего резонанса 743 в том же порядке, что и для первого . резонанса

763

16

В том случае, если учитываются один или два резонанса, параметры последующих резонансов можно не задавать.

Выходная информация

Печать параметров и результатов вычислений будет идти в следующем порядке:

- 1. Массив входных данных в том же порядке, вкаком они вводились.
- 2. В случае учета резонансов печать резонансных параметров.
- 3. Массив результатов:

$$\theta_{\min}$$
; $d\sigma(\theta_{\min})/d\Omega / M \delta/cp / , P(\theta_{\min}), S(\theta_{\min}),$ число нуль,
 $\theta_{\min} + \Delta \theta, d\sigma(\theta_{\min} + \Delta \theta)/d\Omega, P(\theta_{\min} + \Delta \theta), S(\theta_{\min} + \Delta \theta),$
число нуль, ..., θ_{\max} , $d\sigma/d\Omega$, P, S.

4. Интегральное сечение.

Данная программа вычисляет сечения с точностью до множителя 5, который извлекается из сравнения с экспериментальными данными.

Пример расчета

На рисунке приведены результаты расчетов угловой зависимости дифференциального сечения неупругого рассеяния $(d\sigma/d\Omega/m\delta/cp/)$, вероятности спин-флипа /S в %/ и поляризации при рассеянии протонов на 56 Fe при $E_{\rm p}$ =19,6 МэВ.

Сплошная кривая на рисунках - расчеты, приведенные с учетом резонанса, который для примера взят со следующими параметрами: $J^{\pi} = 3/2^{-}$, $\Gamma = 100 \ \kappa_{3}B$, $\Gamma_{\rho_{0}} = 10 \kappa_{3}B$, $\Gamma_{1\frac{1}{2}} = 45 \ \kappa_{3}B$, $\Gamma_{1\frac{3}{2}} = 45 \ \kappa_{3}B$. Пунктирная кри-

18

вая расчеты, выполненные без учета резонансного члена. Эти значения полностью воспроизводят расчеты, приведенные в работе /1/.

Для этих примеров массивы начальных данных имеют следующий вид:

1-й массив 19,6; -0,846; 56; 26; 0; 56; 26; 0; -50,48; 1,19; 0,7; -35,32; 1,31; 0,55; 1,19; -50,48; 0; -8,83; 1,19; 0,7; 1,0; 1,0; -10,24; 0; 1,075; 0,4; 1,0; 1,0; 2; -50,48; 0; -8,83; 1,19; 1,19; 0,7; 1,0; 1,0; -10,24; 0; 1,075; 0,4; 1; 1,0; 2; 1; 1; 0; 0; 1; 1; 0; 2; 2,5; 15,0; 0; 20; 0; 0; 1,31; 0,55; 1,31; 0,55; 0,1; 0; 5; 5; 175; 0,5; 0,5.

2-й массив

0,053; 1; 1,5; 19,6; 0,1; 0,01; 0; 0; 0,045; 0,045; 0; 0; 0; 0; 0; 0; 0; 0.

Авторы выражают большую благодарность В.И.Фурману за полезные обсуждения.

Литература

- 1. Hendrie D.L., Clashausser C., Moss J.M. and Thiriou J. The Physical Review, 1969, 186, 1188.
- 2. Nojiri Tamaki and Toyama Hinako. Journal of the Physical Society of Japan. 1974, 37, 1479
- 3. Satcher G.R. Nucl. Phys., 1964. 55, 1,
- 4. Бор А., Моттельсон Б. Структура атомного ядра. Изд. "Мир", Москва, 1971.
- 5. Ходгсон П.Е. Оптическая модель упругого рассеяния. Атомиздат, Москва, 1966.

Рукопись поступила в издательский отдел 29 декабря 1976 года.