ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ АУБНА

5-903

1 - 9891

TXI

4371/2-70

Ю.А.Будагов, В.Б.Виноградов, А.Г.Володько, Ж.К.Карамян, З.А.Киракосян, Ю.Ф.Ломакин, В.Б.Флягин, Л.Шандор, Б.Г.Чиладзе

ОБРАЗОВАНИЕ СТРАННЫХ ЧАСТИЦ В 77 р-ВЗАИМОДЕЙСТВИЯХ ПРИ 5 ГэВ/с.

Часть І. Определение сечений

1 - 9891

Ю.А.Будагов, В.Б.Виноградов, А.Г.Володько, Ж.К.Карамян, З.А.Киракосян, Ю.Ф.Ломакин, В.Б.Флягин, Л.Шандор, Б.Г.Чиладзе²

ОБРАЗОВАНИЕ СТРАННЫХ ЧАСТИЦ В **П**р-ВЗАИМОДЕЙСТВИЯХ ПРИ 5 ГэВ/с.

Часть I. Определение сечений

Направлено в ЯФ

1 Ереванский физический институт.

2 Тбилисский государственный университет.

Изучению процессов рождения странных частиц в π^- р-взаимодействиях посвящено значительное количество экспериментальных работ /1/, однако сведения о сечениях каналов реакций образования странных частиц в сопровождении большого числа нейтральных крайне бедны.

1

Данная работа является продолжением систематического изучения процессов совместного рождения странных частиц вместе со многими π° -мезонами и γ квантами в π° р-взаимодействиях при 5 $\Gamma \Im B/c$.

Работа выполнена на метровой пропановой камере Лаборатории ядерных проблем, установленной в магнитном поле 17 *КГс*, на пучке π^- -мезонов синхрофазотрона ОИЯИ $^{/2/}$.

Для целей эксперимента было обработано 230000 стереофотографий, содержащих в среднем 6 π^- -мезонов на кадр; средняя эффективность регистрации одного укванта $\epsilon_v \approx 0.2$.

Резулѣтаты исследования двухлучевых событий с образованием Λ -гиперонов представлены в нашей предыдущей работе /3/.Там же изложены методические вопросы, связанные с просмотром, измерениями и обсчетом событий, идентификацией V⁹-частиц и у-квантов. Вопросы идентификации каналов реакций и определения сечений изложены также в работе /4/.

В данной работе сообщаются результаты определения сечений О-лучевых и четырехлучевых событий с образованием V°-частиц, а также двухлучевых событий с образованием K°-мезонов.

3

1. Реакции π⁻р → V° + нейтральные /О-лучевые события/

При определении сечений О-лучевых событий с рождением V°-частиц нами был применен метод " η_{ij} -коэффициентов", подробно описанный в работах/3,4/. Этот метод был проверен в работе $^{/5/}$ по определению сечений реакции $\pi^- p \rightarrow 4_{\rm JVVR}$ + ny (n ≥ 2).

В нашем случае методом наименьших квадратов решалась система уравнений

$$N_{i} = \frac{1}{\sigma_{0}k_{i}} \sum_{j=1}^{M} \sigma_{j} f_{j}(\epsilon_{\gamma}) \eta_{ij} \qquad i = 1, \dots, L, L > M$$

$$\sigma_0 = (0,27\pm0,02)$$
 мкб/событие $^{/11/}$,

где N_i - число событий, удовлетворяющих данной гипотезе: результаты расчетов по программе "fit-каналов реакций"; k_i - множитель, характеризующий данную топологию и учитывающий поправки на ненаблюдаемые события, геометрию камеры, эффективность просмотра и регистрации V°-частиц, вклад взаимодействий на квазисвободных нуклонах ядра углерода. Величины поправок приведены в работе /3/; $f(\epsilon_{\gamma})$ - множитель, характеризующий среднюю эффективность регистрации п γ -квантов (n = 0, 1, 2, ...) в каждой жонкретной топологии для данного канала реакций; η_{ij} - коэффициенты "прохождения", характеризующие относительный вклад в данное, однозначно-идентифицированное /по результатам "fit - каналов"/ конечное состояние, даваемое различными каналами реакций.

В результате решения системы получаем искомые значений сечений σ_i .

В табл. І дано распределение О-лучевых событий по результатам идентификации V°-частиц и у-квантов.

4

ТАБЛИЦАІ.

11	٨	۸/ _K •	К*	∧K•	$\gamma_{\rm K}$	K, K,
0	108	82	221	87	2 4	61
1	60	18	38	24	7	3
2	18	7	17	6	2	2
3	3	0	2	1	0	0
4	1	1	1	1	0	0

ТАБЛИЦА 🏾

	to be	∧ к•	K°Z°	۸ K %	Σ°K¶	A Khái	ZKaa	∧K π π	ZKANA
K	Κ) (Λ)	0 ,8 5	0.75	0,67	0,3	0,05	0,007	0	0
AT{	K•) ∧)		0,6	0,45	0,4	0,15	0,06	0,025	0
Arreit	(*)2 (*)2			0,45	0,4	0,15	0.003	0	0
ÀH.	Kiic Alic			0,1	0.4	0,45	0,3	0,3	0,12
٨٢.	40	0,92	0,7	0.05	0.01	0,003	0,006	0	0
	10	0,06	0,15	0, 8 5	0,7	0,4	0,25	0,15	0,07
	40		0,85	0,10	0,07	0,0055	0	0	
∧K°r	2C		0.05	045	0.3	0.27	0,1	0,04	
•	10		0	0,25	0,42	0.3	0.2	0,1	0,04
	5C			0,9	6,0	0,09	0,015	0,007	
AK00.	4c			0.015	0,20	0,07	0,0 1	0	
11 25	2c			0.045	0,06	0,4	0,35	0,24	0,17
	10			0,015	0,12	0,42	0,4	0,4	0,14

S ALVINGUA	K [®] K [®] ri	K [®] K [®] n¶ [®]	K°K°n 21	K*K*n 3#*
K°K°n lc	0,85	0,67	0,05	0,01
K"K"Yn 10	0	0,45	0,062	0,02
K"K"2771 20	0	0,85	0,075	0,04
tc	0	0,07	0,42	0,15

ТАБЛИЦА Ш.

В табл. II и III представлены значения коэффициентов "прохождения" η_{ij} , полученные путем моделирования /см. подробно/4//.

Наконец, в *табл.* IV даны полученные значения сечений; там же приведены данные других работ по определению сечений в близкой области энергий. При вычислениях принималось $\sigma_{K^{\circ}\tilde{K}^{\circ}} = \frac{4\sigma}{K_{1}^{\circ}K_{1}^{\circ}}$.

Необходимо отметить, что, исходя из максимального числа зарегистрированных у-квантов в одном событии $(n_{\gamma} \leq 4)$, мы ограничились в системе /1/ вкладами сечений каналов реакций с рождением не более трех π° -мезонов.

Сравнение сумм полученных сечений с инклюзивными сечениями рождения ^Л-гиперонов и К^о-мезонов в О-лучевых событиях подтверждает сделанное предположение. Действительно, так как ^{*} /см. *табл*. IV /

таблица 🕎

КАНАЛ	4,0138/0	4,16,138/c	4,65[38/C	5,0 Гэв	50135/c	7,91 Гэн
٨K°	02+14	49±9	4.0	602+97	31±8	27
Σ°Κ°	95±14	42±8	40	0U,∂∸0,/	9±6	5
	00+00	168±15	420	70+20	55 ±8	37
Σ•K•ff°	86133	—	120	/9-20	21±10	-
VK M.	-	-	-	—	19±8	—
Σ°Κ°୩°۴°	-	_	_	1	18,5±8	-
AKMM	_	-	_	_	8,4±5	-
ΣΚΠΠΠ	_		-	—	5±5	-
K [®] K [®] n	176±62	128±24	190 ans)	176±32	85±12	52
K°K°nst°			-	—	39±16	1
KRnafar	—	<u> </u>	_	_	21±14	-
K°K'nnnnn	-	-	_	_	10	-

$$\sigma_{\Lambda}^{\text{inclusive}} = (196 \pm 25) \text{ M } 6 ,$$

$$\sigma_{\Lambda K^{\circ}}^{\text{inclusive}} = (174, 4 \pm 23, 6) \text{ M} 6 ,$$

$$\sigma_{\Lambda K^{\circ} \overline{K}^{\circ}}^{\text{inclusive}} = (155, 4 \pm 19) \text{ M} 6 ,$$

$$\sigma_{K^{\circ}}^{\text{inclusive}} = (388 \pm 49) \text{ M} 6 ,$$

$$\Sigma \sigma_{\pi^{-} p \to \Lambda K^{\circ} + m \pi^{\circ}}^{\text{=}} (168 \pm 11, 2) \text{ M} 6 ,$$

$$\sum \sigma_{\pi^{-} p \to K^{\circ} \overline{K}^{\circ} n + m \pi^{\circ}}^{\text{=}} (155 \pm 21, 5) \text{ M} 6 ,$$

$$m \le 3$$

то выходом процессов с образованием $4\pi^{\circ}$ можно пренебречь.

^{*}При вычислении инклюзивных сечений вклад взаимодействий на квазисвобедных протонах углерода принимался равным 40% от сечений взаимодействия со свободным нуклоном.

2. Реакции пр→2 луча + К° + ...

Для определения сечений этой группы нами был применен другой метод - κ_{ij} коэффициентов, гакже разработанный в работе $\frac{1}{4}$ и апробированный при обработке событий "2 луча + Λ + ... " $\frac{3}{2}$.

Из-за большого числа возможных каналов реакций для событий с топологией "2 луча K + ... "число однозначно идентифицированных событий по огношению к неоднозначным невелико, и применение метода " η_{ij} коэффициентов" или традиционной методики определения сечений малоэффективно.

Следует отметить, что по сравнению с О-лучевыми событиями или с событиями "2 луча – \ – ... " ³ для событий с зарегистрированным распадом К -мезона возникиет ряд трудностей.

Во-первых, это - увеличение группы событий /см. ³ / с большими ошибками в определении параметров треков звезды - "короткие" греки /в основном за счет распадов заряженных гиперонов и мезонов/:

Во-вгорых, наличие среди возможных процессов реакций с образованием очень медленного протона / тр. ...рК К°, рл К°К°, рК К л и т.д./. Для учета этой группы событий вводилась дополнительная поправка.

Наконец наличие большого числа каналов реакций, в конечном состоянии которых может быть зарегистрирован К^о-мезон. Это приводит к тому, что в случае учета в системе уравнений /2/ каналов с образованием двух π -мезонов число параметров (a_j) становится сравнимым с числом уравнений (M-L), и решения такой системы становятся неустойчивыми. Указанные трудности устраняются путем введения вместо $\eta_{ij} = \kappa_{ij}$ -коэффициентов.

В методе " _{к іj} -коэффициентов", решая методом наименьших квадратов систему уравнений

$$N_{i} = \frac{1}{\sigma_{0} k_{i}} \sum_{j=1}^{M} \sigma_{j} f_{j} (\epsilon_{\gamma}) \kappa_{ij} \qquad i = 1, ..., L \qquad /2/$$

								AbJ	Ц И	> 									
an a	pK ^r	pĸĸŝ	ркі зи	prīkk	prixe	đđ K		K t ra	d Kat	เช้ห์ก	trkkna	tarKka	Zirka	žĩr	En ^t %	E Kan	zātk	ZK ZH	漢
ρK⁻K⁰	0,850	0,050	0,007	000	0003	0,000	0000	0001	0,000	0,006	0'000	0,000	0,020	0,400	00200	0,020	0,010	0,030	000
pk K (ff)	0, 760	0000	0,525	0,560	0,417	0,460	0,174	0,285	0,275	0,230	0,230	0,180	0,620	0,540	0,365	0,380	0,270	0,545	0.200
pff-K*(K*)	0,280	0,740	0,420	0, 790	0.270	0,230	0,210	0,430	0,325	0,250	0,240	0,190	0,720	0, 260	0,300	0,340	0,100	0420	0,160
	0.027	0450	0.473	0,380	0.340	0,640	0,120	0,560	0,150	0,560	0,150	0.060	0.300	0.020	0.295	0770	0,020	0440	0,100
KTCK (n)	0900	0.364	0,520	0,500	0,275	0,480	0,290	0,745	0,225	0470	0,315	0.230	0430	0,060	0.300	0420	0700	0470	0,150
lt+K_K°(n)	09010	0.270	0,493	0,280	0.365	0,480	0,290	0,470	0,315	0,741	0.225	0,230	0,310	0,040	0420	0,470	0,060	0,420	0.150
Σ_11+K°	0,110	0,020	QO14	0,020	0002	0000	0000	0,000	8000	0,004	0,000	0000	0,010	0,000	0,050	0,007	0,840	0,007	0,000
ETH*KM	0.360	0.335	0460	0,150	0,440	0,160	0.145	0,445	0.155	0,270	0,280	0.155	0,240	0,000	0,795	0,560	0,755	0.185	0,150
2 ⁺ 11 ⁻ K	0,410	0,00	0,013	0.010	0,010	0000'0	00000	0,007	00000	0.000	0,000	0000	0.050	0,850	0.010	0,007	0,000	0,007	0000
E ⁺ IF ⁻ K all	0.550	0,650	0,570	0,560	0,518	0,160	0,14.5	0.270	0,280	0,145	0,155	0,155	0,735	0,760	0.230	0,185	0000	0,560	0,150
pK ⁻ K°r	0,000	0000	0,007	0000	0,003	0,000	0000	0,000	0000	0,000	0000	0,000	0020	0,000	0200	0,026	0,000	0,030	0000
PCK10	0000	0880	0.525	0000	0,417	0,000	0,174	0000	0,275	0000	0,230	0,000	0,630	0.000	0,365	0.380	0,000	0,545	0,200
DI Kr (K)	000	0,7,0	0,420	800	0.270	0,000	0,210	0,000	0325	0,000	0.240	0,000	0,730	00000	0,300	0,340	0000	0420	990
at the Krow	800	0,8,0	0473	0000	0,840	0,000	0,120	0,000	0,150	0,000	0,150	0,000	0,300	0,000	0,295	0440	0000	0440	0 ,0
K K K (U)	0000	0,384	0.520	0000	0,275	0,000	0.290	0000	0,225	0,000	0,315	0,000	0,430	0000	0,300	0.420	0,000	0,470	0,150
	0000	220	0493	800	0,385	000,0	0.290	000	0.315	0000	0.225	0000	0.310	0,000	0.420	0.470	0.000	0,420	0,150
Z 7 + K - L		8	o'o't	80,0	000	000	000	800	0000	0,000	00000	00000	0,040	0,000	0,050	0,007	0,000	0,007	0000
N.K.K	800	0.335	09460	0.000	0,4,0	0,000	0,445	0,00	0,155	0,000	0,280	0000	0.240	0000	0,795	0.560	0,000	0,185	0,150
2 H K J	80	8	ŝ	800	990	0000	0000	0,000	0000	0000	0000	0000	0.050	0000	01010	0,007	0,000	0,007	0000
	Boo	0650	0.570	0000	0.518	000,0	0,14,5	000	0,280	0,000	0,155	800	0,800	0000	0,230	0,185	0,000	0,560	0,150
F TKK(n)	800	800	8	0,0,0	0,300	800	0000	0000	0000	0000	0,000	0,868	0,000	0000	0,000	00000	0000	000010	002'0
X X IO	ĝ	ĝ	8	0990	0 ,16 0	0,00	80	0,00	000	0,000	000	0,020	0000	0000	0000	0000	0000	0000	0,050
	0000	0000	0000	0,710	0,830	0000	0000	0,000	0,000	0,000	0000	0,250	8000	0,000	0000	0000	0000	00000	0.270
]

8

9

получим искомые значения сечений σ_j . Величины N_i , σ_0 , k_i , f определены выше. κ_{ij}^j -коэффициенты, характеризующие относительный

^к, ^ј -коэффициенты, характеризующие относительный вклад в данное идентифицированное конечное состояние какого-либо из исследуемых реакций /регистрируемой топологии/ независимо от степени однозначности идентификации. Это означает, что одно и то же событие может идентифицироваться как принадлежащее нескольким различным каналам реакций.

Значения коэффициентов κ_{ij} для данного эксперимента были получены путем моделирования и приведены в *табл.* V.

Исходя из числа событий с двумя и тремя зарегистрированными у-квантами /см. *табл*. VI /, мы провели оценку суммарного сечения рождения одного и двух π° мезонов в двухлучевых π^{-} р-взаимодействиях с зарегистрированным распадом $K^{\circ} \rightarrow \pi^{+}\pi^{-}$.

Считая, что все зарегистрированные γ -кванты произошли от распадов π° -мезонов, и предполагая, что средняя эффективность регистрации γ -квантов не зависит от топологии /3, 4/, получим, что

$$\Sigma \sigma_{\pi^{-}p} \rightarrow 2\pi y 4a + K^{\circ} + \pi^{\circ} \sim 400 \text{ m}6,$$

$$\Sigma \sigma_{\pi^{-}p} \rightarrow 2\pi y 4a + K^{\circ} + 2\pi^{\circ} \sim 80 \text{ m}6.$$

nr	K	∕y _{K⁰}	٨K°	∕ <u>∕</u> κ•K•	K°K•	٨
0	565	267	101	49	45	460
1	145	73	26	13	8	14 2
2	36	16	5	2	1	35
3	3	2	2	1		3

ТАБЛИЦА 🗹.

ТАБЛИЦА <u> 7</u>

КАНАЛ	4,0136	4.0 (3) Catha C	4,16 Гэв у На Ус	4,65r38/	5,0 гэв/с	5,0 r98/c	7,91, 198%
11p-pKK	98 ±25	67±15	54±9	20	56±10	60±6	29
pKKS	64±21	_	75±20	90	56±10	24±10	-
pit K K	51±14	36±12	72±20	20	60±8	38±6	41
pr KK	20±20	24 ± 16	20±9	-	-	36±10	-
paik kiel	-	-	-	-	-	20	+
S M ∧ K [•]	223±30	154±14	96±10	-	187,5±28,4	174±38	33
STIAK	63±26	85±21	70±11	-	103±17	117±72	106
Kw K n	78±23	147±18	64±12	70	71±12,8	72±H	_
KEKNE	-	-	-	-	-	63±21	-
SXKn	101±25	126±17	69±13	90	72±12	80±12	-
s K Kha	-	-	-		_	64±22	
Σ ⁺ π ⁻ K [•]	1	-	40±7	30	19±4	36±6	5
ZBKW	-	-	36±8	-	29 ±7,5	70 ± 10	15
Z #+K*		-	44±5	40	29±5	37±7	6
ZEKT	71±25	-	55±11		33±8	68±11	24
SK KR	64±37	40±20	24±10	_	56±16	66±10	36
SEKKINE	-		-		- 1	21±17	_

Если же учесть тот факт, что некоторая часть уквантов обусловлена распадами Σ°-гиперонов, то тогда

$$\Sigma \sigma_{\pi^- p} \rightarrow 2$$
луча + K° + π° > 400 мб,
 $\Sigma \sigma_{\pi^- p} \rightarrow 2$ луча + K° + $2\pi^\circ$ < 80 мб.

Пользуясь полученными оценками, мы не включили в систему уравнений /2/ каналы с образованием двух π° -мезонов. Полученные величины парциальных сечений представлены в *табл*. VII, там же приведены результаты ряда работ по определению сечений в близкой области энергий.

3. Реакции $\pi^{-} p \rightarrow 4$ луча + V^{c} + ...

Наконец, нами были получены сечения каналов реакций для событий типа $\pi \bar{p} = 4$ луча $+ V^{\circ} + ...$.

Поскольку таких событий относительно немного и степень однозначности идентификации по результатам обсчета по программе" fit -каналов" реакций достаточно высока, сечения каналов реакций определялись традиционной методикой /10/. Кроме того, проводилась идентификация вторичных частиц по ионизации, длине следов δ электронов, остановке в камере и характерным распадам.

В нашем случае π^{+} -мезоны и протоны можно было достаточно надежно разделить вплоть до р. O,9 ГэВ/с, а π - и К-мезоны - до р. O,7 ГэВ/с.

Неоднозначно идентифицированные события при вычислении сечений брались с весами, соответствующими числу однозначно-идентифицированных событий.

Сечения определялись по формуле

 $\sigma_{i} = \sigma_{0} \mathbf{k}_{i} \mathbf{N}_{i} \mathbf{f}_{i} (\overline{\epsilon_{y}}) ,$

ТАБЛИЦА 📶.

nr	٨	^∕ _K •	K°	٨٢•	∕∕ _{K⁰} K°	K*K*
0	72	57	84	11	1	6
1	33	15	33	1	0	0
2	3	0	6	1		
3			1			
4			1			

ТАБЛИЦА 🛛 .

			797	787	FOR / 4 4 M
КАНАЛ	40138°	3,8+4,2 F98/C	4,65 <u>36</u> (50 <u>136</u> (5,0 C MS
л īр+рК+211 К	12±8	9,7±2,6		24±6	12,7±6, 0
pK21TKn			40	7±4	8,1±4,0
pK ग़ ॏॕॱK°		15,8±3,4	20	10±4	24,8±70
pKitiKi				-	14,8±6, 0
211 1 K.K.n				5±3	1 6,2±6, 0
2111 K K n				8±4	16,8±6,5
ZW 2N K°	2±2	3,7±1,0	20	15±3	4,0±4,0
ร ีส2ตัหน้				11±4	6,2±4,0
ZTZT K°	11±5	13,2± 2,0	20	13±2	4,4±4,0
z ิมี211ี่ห์ที่				6±3	2 ,4 ±2,4
ptt 21TKK			30	28±15	1,0±1,0
TTP+KitzTA	33±10	30 ± 3,8	10	51±7(1/2)	22,6±7,0
	12±6(/2.)		50	34±5	21±7
Kn2n7/กกก					1,3±0,6
Ktr 2rr Z°					4,1±1,3
Kn2n2n					9,1±3, 0
211217 / K	3±3(1/2)		20	12±3	16,9±5,6
21217/Kn	10±10				4,4±1,3
2121 ZK					6,1±2,0
21211 2 K 1					2±1

где σ_0 , k_i и N_i - см. определения выше; f_i(ϵ_{γ}) - множитель, характеризующий вероятность регистрации п γ квантов (n = 0,1,2) в данной топологии для конкретного канала реакций.

Распределение событий по числу зарегистрированных V° и у-квантов представлено в табл. VIII.

Полученные значения парциальных сечений приведены в *табл*. IX, там же представлены результаты ряда работ по определению сечений в близкой области энергий.

لسم

Заключение

В данной работе измерены сечения $\pi^- p$ -взаимодействий при $p_{\pi^-} = 5$, О ГэВ/с, приводящие к образованию V°частиц в сопровождении π° -мезонов и у-квантов.

Результаты работы показывают, что применение метровой пропановой камеры с достаточно высокой эффективностью регистрации у-квантов в сочетании с новой методикой определения сечений / η_{ij} ; или κ_{ij} - коэффициенты/ позволяет получить качественно новую и существенную информацию о взаимодействиях элементарных частиц. Это в первую очередь относится к реакциям с рождением большого числа нейтральных частиц и у-квантов.

В заключение нам хочется выразить благодарность коллективу синхрофазотрона за помощь при облучении камеры, а также лаборантам ЛВТА и ЛЯП за обработку и обсчет событий.

Литература

- 1. O.I.Dahl et al. Phys. Rev., 163, 1377, 1967.
- 2. А.В.Богомолов и др. ПТЭ, 1, 61 /1964/.
- 3. Ю.А.Будагов и др. Сообщения ОИЯИ, 1-6568, Дубна, 1972.
- 4. А.Г.Володько и др. Сообщения ОИЯИ, Р1-6488, Дубна, 1972.
- 5. А.Г.Володько и др. Сообщения ОИЯИ, 1-8514, Дубна, 1975.

Н.С.Амаглобели и др. Сообщения ОИЯИ, Р1-8699, Дубна, 1975.

- 6. S. Bartsch: et al. Nuovo Cim., 43A, 1010, 1966.
- 7. L. Bertanza et al. Phys. Rev., 130, 786, 1963.
- 8. В.В.Глаголев и др. Препринт ОИЯИ, РІ-8147, Дубна, 1974.
- 9. R. Ehrlich et al. Phys. Rev., 152, 1194, 1966.
- 10. М.Р.Атаян и др. Препринт ОИЯИ, 1-3779, Дубна, 1968.
- 11. Ю.А.Будагов и др. ЯФ, 11, 395 /1970/.

Рукопись поступила в издательский отдел 9 июля 1976 года.