СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ДУБНА

1 - 9718

6/1x-76

Н.С.Амаглобели, Ю.А.Будагов, В.Б.Виноградов, А.Г.Володько, Ю.Ф.Ломакин, В.С.Румянцев, Р.Г.Салуквадзе, В.Б.Флягин, Л.Шандор,

2-76

11 88000

C346.46 3501

A-61

Ш.С.Шошиашвили

АНАЛИЗ ПАРЦИАЛЬНЫХ И ТОПОЛОГИЧЕСКИХ СЕЧЕНИЙ 7 р-ВЗАИМОДЕЙСТВИЙ ПРИ 5 ГэВ/с

1 - 9718

Н.С.Амаглобели, Ю.А.Будагов, В.Б.Виноградов, А.Г.Володько, Ю.Ф.Ломакин, В.С.Румянцев, ** Р.Г.Салуквадзе, * В.Б.Флягин, Л.Шандор, Ш.С.Шошиашвили *

АНАЛИЗ ПАРЦИАЛЬНЫХ И ТОПОЛОГИЧЕСКИХ СЕЧЕНИЙ **7 Р-**ВЗАИМОДЕЙСТВИЙ ПРИ 5 ГэВ/с

Тбилисский государственный университет.

Институт физики АН БССР, Минск.

оторинали институт адерных воследования БИБЛАЮТЕКА

				1
AMONTOFORT HC	w #n	3		
Mainquenn n.c.	n whe			4718
			-	ALTO AND

Анелиз парциальных и топологических сечени л р -взаимодействий при 5 ГэВ/с

Получен полный набор парциальных и топологических сечений *** -взаимодействий при 5 ГэВ/с, и на его основе вычислены параметры распределений по множественности вторичных частиц разного типа. Построены распределения по множественности "-, "-, "-мезонов заряженных частиц, а также распределения по полной множественности вторичных частиц. Показано, что распределение по множественности ж°-мезонов согласуется с распределением Пуассона.

Проведен анализ корреляций в выходах "-, "-, "-мезонов,

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Сообщение Объединенного института ядерных исследований Дубна 1976 Введение

В настоящее время распределения по множественности вторичных частиц, образующихся в адрон-адронных взаимодействиях, являются объектом интенсивного теоретического и экспериментального исследований. Актуальность этой проблемы обусловлена тем, что анализ формы и параметров указанных распределений позволяет делать определенные выводы о механизме рождения вторичных частиц. Однако до сих пор основным источником экспериментальной информации такого рода являются данные о распределениях по множественности заряженных частиц. Данные о распределениях по множественности нейтральных частиц и в связи с этим данные по множественности всех вторичных частиц крайне ограниченны * несмотря на то, что нейтральные частицы составляют примерно одну треть полного числа вторичных.

В экспериментах, выполненных на метровой пропановой пузырьковой камере Лаборатории ядерных проблем ОИЯИ, получена обширная информация о парциальных сечениях каналов реакций с заданным числом π° -мезонов в конечном состоянии в π^{-} р-взаимодействиях при 5 $\Gamma_{\mathcal{B}}B/c^{/3/}$.Анализ этих данных совместно с результатами измерений парциальных сечений π^{-} р-взаимодействий на водородных пузырьковых камерах как при

*В работе /1/ получены распределения по множественности п°-мезонов и по полному числу вторичных частиц, образующихся в п⁻р -взаимодействиях при 40 ГэВ/с.

3

5 ГэВ/с, так и при близких к 5 ГэВ/с импульсах позволяет получить полный набор парциальных сечений, а также распределения по множественности вторичных частиц практически любого типа.

Данная работа посвящена анализу существующей в настоящее время экспериментальной информации о парциальных и топологических сечениях реакции

$$\pi^{-} p \rightarrow N + n_{+} \pi^{+} + n_{-} \pi^{-} + n_{\circ} \pi^{\circ}$$
 /1/

при 5 $\Gamma \Im B/c$. Здесь N - нуклон, а n_+ , n_- , n_{\circ} - число π^+ , π^- и π° -мезонов соответственно.

Получены и исследованы распределения по множественности π^+ , π^- и π° -мезонов, заряженных частиц, а также всех вторичных частиц. Проведена проверка согласованности ряда теоретических моделей и эмпирических формул с исследуемыми распределениями. Рассмотрены корреляции в выходах вторичных частиц.

Полное сечение реакции /1/ можно представить следующим образом:

 $\sigma_{(1)} = \sigma_{\text{tot}} - \sigma_{\text{el}} - \sigma_{\text{STR}}, \qquad /2/$

где σ_{tot} - полное сечение, $\sigma_{e\ell}$ - сечение упругого рассеяния, σ_{STR} - сечение образования странных частиц. Значения величин σ_{tot} , $\sigma_{e\ell}$ и σ_{STR} при 5 ГэВ были определены путем интерполяции данных при близких энергиях, приведенных в работе $^{/5/}$. Аналогичным образом были определены топологические сечения восьмилучевых событий σ_{g} и сечения $\sigma(p\pi^{-}\pi^{\circ})$, $\sigma(p\pi^{-}Z^{\circ})$, $\sigma(\pi^{+}\pi^{-}Z^{\circ})^{*}$. Результаты интерполяции приведены в табл. 1.

Таблица 1

	$\sigma_{ m tot}$	^{<i>о</i>} е 	σ _{STR}	σ	σ ₍₁₎	σ(pπ π [°])	σ(pπ Ζ	?)o(#7Z?)
мбарн	29,24	5,44	2,40	0,05	21,4	1,40	2,26	4,65
	<u>+</u> 0,40	±0,50	<u>+</u> 0,20	<u>+</u> 0,02	<u>+</u> 0,6	<u>+</u> 0,12	<u>+</u> 0,25	<u>+</u> 0,24

Топологическое сечение σ_8 составляет менее 0,3% полного сечения σ_{tot} . Предварительные оценки показали, что сечение образования более восьми частиц в конечном состоянии практически равно нулю. Поэтому можно ограничиться рассмотрением сечений неупругих взаимодействий с 0, 2, 4 и 6 заряженными частицами в конечном состоянии и с полным числом вторичных частиц не более восьми.

Данные о парциальных сечениях реакций

$$\pi^{-} p \rightarrow p\pi^{-}(2, 3, 4, 5) \pi^{\circ},$$

$$\rightarrow p2\pi^{+}3 \pi^{-}2 \pi^{\circ}, /3/$$

$$\rightarrow N3\pi^{+}3\pi^{-}\pi^{\circ} \text{ отсутствуют.}$$

Эти сечения были оценены на основе статистической изоспин-независимой модели /6/, позволяющей вычислять относительные вероятности $\eta_{i,n}$ i-ой зарядовой конфигурации конечного состояния, содержащего n частиц. Удовлетворительное согласие этой модели с экспериментальными данными о парциальных сечениях $\pi^- p$ -взаимодействий в интервале энергий 1÷16 ГэВ было показано в работе /7/. В табл. 2 приведены значения величин $\eta_{i,n}$ /для $2 \le n \le 12$ /, вычисленные с помощью программы NISCO*.

* W. Kiffel, P. Lauscher. CERN Program Library, W700.

^{*} В скобках указаны конечные состояния; символ Z° соответствует состоянию с более чем одной нейтральной частицей.

Таблица 2

1/00-0-0

KU3	ФФИЦИЕ	HTH Din	
<i>n</i> =2		n=9	
017-	0 556	0311/19-10	0 152
nno	0,550	pon 40 1	0, 152
1100	0,744	11 711 411	0,142
2		<i>p211-311-311</i>	0,230
n # m - /1 - 3	0 278	1311 311 211	0,278
	0,370	p11-211 511	0,067
11.11.11	0,407	n211 211 411	0,179
n n · · · ·	0,156	par 1	0,002
n -1.		nn+11-611°	0,021
11		1811	0,000
ρπ·2π	0,280		
p# 211° -	0,200	17 =10	× ×
1711 11	0,460	D411+511-	0,026
n 311°	0,060	D 311 415-20°	Ó.224
		17417+41-11°	0.122
n=5		D2n+3n-4n°	0.194
DT+2T-T°	0.358	n.307+37 -35	0 277
n21+21-	0.212	01 +27-670	0034
017-3110	0.004	n2n+2n-5n°	0,100
n II + II - 2II	0.315	00-800	0,00
n4π ⁰	0,070	n 9 + 9~ 79	0,007
	0,027	m 000	0,009
n - 6		11.34	0,000
$n 2\pi + 3\pi^{-}$	0 120	77-11	
011121-210	0,750	1 - //	
p20+20-00	0,301	p 411 511 11	0,086
11211 211 11	0,337	1134 31	0,019
p# 4#	0,047	p 311 417 31	0,248
<i>nnnnnnnnnnnnn</i>	0,181	1411411 211	0,199
n 5 #*	0,007	p2n 31 51	0,131
		n 317 31 411	0,232
n=7		p#*2#*7#*	0,017
p2n+3n-n°	0,249	n2n+2n-6n°	0,062
'n 3#+3#-	Ó,094	pn-9n°	0,000
<i>ุคπ+2</i> π⁻3π°	0,204	n###-8#°	Ó,004
n2n+2n-2n	0,336	n 10 11°	0.000
p11-511°	0,017		
n#+#-4#°	n.094	n = 12	
non°	0.002	D 5n+6n-	0 120
17 = 8	-,	041+51-210	0,155
$0.3\pi^{+}4\pi^{-}$	0.059	n Sn+sn nº	0,067
025+137-270	0,000	030 t 0 4 0°	0,007
n 3 11 + 2 11 - 11 °	0,200	n45+45-30°	0,228
0 11 1 2 2 - 4 50	0,277	020+20-650	0,242
n20120-250	0,122	h 80 + 30 - 50°	0,082
11211 211 311	0,204	09120-800	0,172
p# 0#	0,007	p" 2" 0"	0,008
111 11 311	0,045	11211/211 14	0,033
n ///~	0,001	p" 1011	0,000
		111 11 917	0,002
		1111	0,000
		l	······

Таблица З

	Парциальные сечения Б(n.a,n.) (мб)							<i>c</i> ′	6
Il ch	0	2		4		6		Опрмб	О_п, мб
no	n	n ¶⁺¶ ¯	pn-	n 291*20	p π+2π−	n3#¯3#⁺	p2#+3#	n_n*+X	ึก ุส¥X
0 n °		1,97±0,13		1,10±0,03	1,84±0,04	0,084±0,015	0,23±0,01	5,22±0,15	6,44±0,18
1រា°	0,12±0,04	2,49±0,50	1,40±0,12	1,33±0,23	1,91±0,06	0,096±0,015	0,30±0,012	7,63±0,65	8,65±0,65
2 ¶°	0,84±0,13	1,23±0,20	1,45±Q15	0,68±0,10	1,17 ± 0,14		0,125±0,0 12	5,50±0,30	5,57±0,30
3¶°	0,16±0,09	0,54±0,10	0,70±0,08	0, 1 6±0,03	0,70±0,07			2,26±0,20	2,26±0,20
4 n°	0,13±0,03	0,35±0,06	0,08±0,03		0,09±0,02			Q71±Q07	0,71±0,07
5 ก °	0,12±0,02	Q 04±0,02	QD3±QD1					0,19±0,03	0,19±0,03
б'n	1,37±0,05	10,28	±0,50	8,90	±0,40	0,83±	0,05	21 ,4 ±0,5	
бn _a	1,66±0,10	11,58	±0,50	9,66	5±0,30	0,87 ±	0,05		23,8±0,5

На основе экспериментальных данных о сеченнях реакций с п частицами в конечном состоянии и коэффициентов $\eta_{i,n}$ сечения $\sigma(p\pi^-Z^\circ)$ и $\sigma(6 лучей, Z^\circ)$ были разложены по парциальным сечениям реакций /3/.

Таким образом, совместный анализ экспериментальных данных о парциальных сечениях $\pi^- p$ -взаимодействий как при 5 Γ эB/c, так и при близких значениях импульсов и применение статистической изоспин-независимой модели позволили получить полный набор парциальных топологических сечений $\sigma'_{n_{eh}}$ и сечений образования п π° -мезонов $\sigma'_{n_{o}}$. Результаты приведены в *табл. 3.* В этой же таблице приведены сечения $\sigma_{n_{eh}}$ и соверение в *табл. 3.* В этой неупругого $\pi^- p$ -взаимодействия.

На *рис. 1* показаны зависимости топологических сечений $\sigma_{n \ ch}$ от энергии E* в системе центра инерции. Сечения одинаковой топологии соединены сплошными линиями. Видно, что полученные таким образом тополо-

6

7

Рис. 1. Зависимость топологических сечений $\pi^- p$ -взаимодействия от энергии в системе центра масс. Черными символами обозначены значения величин $\sigma_{n_{ch}}$ при 5 ГэВ/с.

гические сечения хорошо согласуются с результатами других экспериментов. На *рис.* 2 показаны экспериментальные значения величин коэффициентов перезарядки $K_n (p \rightarrow n)$ в зависимости от полного числа вторичных частиц n в конечном состоянии для реакции /1/. Сплошная кривая соответствует статистической изоспин-независимой модели /пунктирная кривая проведена от руки/. Видно, что модель удовлетворительно согласуется с экспериментом.

В упомянутой ранее работе ^{/7/} проверка статистической изоспин-независимой модели производилась на довольно разнородном экспериментальном материале /количество используемых в анализе парциальных сечений очень неравномерно распределено по изучаемому интервалу энергий/.

Причем существенно, что данных при 5 ГэВ/с в то время не существовало. Естественно, возникает вопрос о сравнении предсказаний этой модели с парциальными сечениями реакции /1/.

С этой целью была вычислена величина

$$\chi^{2} = \sum_{n=3}^{8} \sum_{i=1}^{n} (\eta^{3}_{i,n} - \eta_{i,n})^{2} / \Delta \eta^{2}_{i,n} ,$$

где

$$\Delta \eta_{i,n}^{9} = \frac{1}{\sigma_{n}} \{ [(1 - \eta_{i,n}) \Delta \sigma_{i,n}]^{2} + \eta_{i,n}^{2} [\sum_{\substack{\ell=1 \\ \ell \neq i}}^{n} (\Delta \sigma_{\ell,n})^{2}] \}^{1/2},$$

$$\sigma_{n} = \sum_{i=1,n}^{n} \sigma_{i,n}, \qquad \eta_{i,n}^{9} = \sigma_{i,n} / \sigma_{n}.$$

σ_{i, n} и Δσ_{i, n} - экспериментальное сечение i - ой зарядовой конфигурации конечного состояния, содержащего n частиц, и его погрешность соответственно.

Коэффициенты $\eta_{i,n}$ и сечения $\sigma_{i,n}$ брались из табл.2 и табл. 3 соответственно. Оказалось, что χ^2 = 173 для 29 экспериментальных точек. Основной вклад в величину χ^2 обусловлен сечениями образования следующих конечных состояний:

$\pi^{-}p \rightarrow p 2\pi^{+} 3\pi^{-}; \quad p 2\pi^{+} 3\pi^{-} \pi^{\circ}; \quad n 3 \pi^{+} 3\pi^{-};$

$n5\pi^{\circ};$ $p\pi^{+}2\pi^{-}3\pi^{\circ}.$

Для оставшихся 24 экспериментальных точек $\chi^2 = 39$, что соответствует $P(\chi^2) = 0,02$. Эти результаты свидетельствуют о том, что статистическая изоспин-независимая модель удовлетворительно согласуется с подавляющей долей экспериментальных данных для реакции /1/ при 5 ГэВ/с.

§2. Средние характеристики распределений по множественности вторичных частиц

В табл. 4 представлены величины инклюзивных сечений образования π^+ -, π^- -, π° -мезонов и ряд характеристик распределений по множественности этих частиц: средняя множественность $< n_i >$, дисперсия D_i , корреляционный момент второго порядка f_2^{ii} , величины $< n_i(n_i - 1) >$ и $D_i / < n_i >$.

В этой таблице приведены также аналогичные характеристики распределений как по множественности заряженных частиц, так и по множественности всех вторичных частиц.

		Е^{инкл}(тв)	$\langle n_i \rangle$	(n _i (n _i -1))	₽.=₭₶̂>-‹₶\$	<n;>/ Di</n;>	$\int_{2}^{il} = D_{i}^{2} - \langle n_{i} \rangle$
ы	¶_	30,6±1,4	1,43±0,05	1,06 ± 0,04	0,67±0,04	2,13,±0,18	- 0,98 ±0,09
ACTM	¶+	20,6±1,0	0,96±0,03	0,41±0,02	0,67 ± 0,03	1,43±0,09	-0,51 ± 0,07
ых ч,	¶°	29,2±0,7	1,36±0,05	1,72±0,08	1,11 ± 0,05	1,22±0,06	-0,12 ± 0,10
PAHH	Nch		2 ,86±0,0 9	7,1 ± 0,2	1,34±0,09	2,1 ± 0,2	-1,06 ±0,33
EE3 CI	n		4,76±0,18	20,04±0,75	1,33±0,32	3,60±1,0	-3,01 ± 0,96
AHHH	¶°	30,5±0,7	1,28±0,05	1,57±0,07	1,10±0,05	1,16 ±0,05	-0,07±0,10
CO CTF MM 4AL	Πc		2,82±0, 07	6,95±0,19	1,35±0,07	2,09±0,15	-1,00±0,25

Таблица 4

Средние множественности и, следовательно, сечения инклюзивного образования π^- -и π° -мезонов совпадают в пределах ошибок. Соответствующие величины для π^+ мезонов меньше примерно в 1,4 раза.

Величина отношения $<n_o>/(<n_+>+<n_>)$ в нашем случае составляет O,569±O,O25. Таким образом, нарушение асимптотического соотношения $<n_o>=0,5(<n_++<n_>)$, вытекающего из изотопической инвариантности для структурных функций частиц, относящихся к одному изомультиплету /11/, при 5 ГэВ/с составляет =14%.

В двух последних строках *табл.* 4 приводятся характеристики распределений по множественности π° -мезонов и по множественности заряженных частиц для взанмодействий, сопровождающихся образованием странных частиц. Видно, что в пределах погрешностей эти характеристики нечувствительны к образованию странных частиц.

Величины корреляционных моментов f_2^{ii} свидетельствуют о том, что π° -мезоны образуются независимо друг от друга /момент $f_2^{\circ\circ}$ в пределах ошибок равен нулю/, а образование заряженных π -мезонов скоррелировано /значения f_2^{--} и f_2^{++} отличны от нуля/.

§3. Распределения по множественности вторичных частиц

Распределения по множественности π^- , π^+ , π° -мезонов, по множественности заряженных частиц n'_{ch} и по полному числу всех вторичных частиц n для реакции /1/ показано на *рис. За, Зб, 4а, 4б* и 5 соответственно. Из всех этих распределений только распределение по множественности π° -мезонов хорошо описывается формулой Пуассона /пунктирная линия на *рис. 4а*/, что является следствием равенства нулю величины $f_2^{\circ\circ}$. Параметр распределения Пуассона $a = 1,38\pm0,02$ практически совпадает с величиной $<n_{o}> = 1,36\pm0,05$.

На основе статистической модели множественного образования частиц $^{/8/}$ были вычислены распределения по множественности π^+ , π^- , π° -мезонов и заряжен-

ных частиц n_{ch} /сплошная линия на *рис. За, Зб, 4а, 4б* соответственно/. Наблюдается только качественное согласие этой модели с экспериментальными данными.

В работах ^{/9,10/} было указано, что в интервале энергий 10-200 ГэВ распределение по n_{ch} удовлетворительно согласуется с эмпирической формулой Чижевского-Рыбицкого ^{/9/}

$$\sigma_{n_{ch}} = \sigma_{in} \frac{d}{D} e^{-d^2} d^{2(dx + d^2)} / \Gamma (dx + d^2 + 1), \qquad /4/$$

где $x = (n_{ch} - \langle n_{ch} \rangle) / D$, D - дисперсия распределения, а d - свободный параметр. Причем во всем интервале энергий d = 1,8 и практически не зависит от типа начальных частиц.

Аппроксимация формулой Чижевского-Рыбицкого /штрих-пунктирная линия на *рис. 3,4* и 5/ распределений по множественности вторичных частиц, образующихся

Рис. 4. Зависимость сечений σ'_{n_o} и π^o -мезонов и заряженных частиц n'_{ch} .

от числа

Рис. 5. Зависимость сечений σ_n от общего числа вторичных частиц n.

13

в реакции /1/, дала возможность сделать следующие заключения:

- распределение по полному числу всех вторичных частиц п при фиксированном значении d=1,8 хорошо согласуется с формулой /4/ ($P(\chi^2) = 0,10$);

- для распределений по n_+ и n_{\circ} удовлетворительное описание достигается при $d = 2,6(P(\chi^2) = 0,05)$ и d = 1,25 $P(\chi^2) = 0,20)$ соответственно;

- распределения по n_ и n'_ch_ не описываются формулой /4/ $(\mathrm{P}\,(\chi^2)\,\leq\,0,01$).

§4. Корреляции в выходах вторичных частиц

Одним из источников информации о динамике процессов множественного образования частиц является исследование корреляций по множественности вторичных частиц. На *рис*. б представлены полученные нами экспериментальные данные для реакции /1/ о зависимости средней множественности частиц типа с от числа ассоциированных частиц типа d <n_c >_{n d}.

Эти зависимости были аппроксимированы линейной функцией /сплошные линии на *рис.* 6/:

 $\langle \mathbf{n}_{c} \rangle_{\mathbf{n}_{d}} = \mathbf{a}_{cd} + \mathbf{b}_{cd} \mathbf{n}_{d}$, $c \neq d$,

где а_{cd} и b_{cd}- свободные параметры. Результаты аппроксимации представлены в *мабл. 5.*

Ι αυλαμά 3					
	Cl _{c,d}	B _{c,d}			
$\langle n_{-} \rangle_{n_{+}}$	0,67±0,02	0,77±0,03			
$\langle n_+ \rangle_{n}$	-0,11 ±0,05	0,72 ± 0,03			
$\langle n_+ \rangle_{n_0}$	1,65 ±0,04	-0,17 ± 0,03			
$\langle n_{-}\rangle_{n_{0}}$	1,27 ± 0,04	-0,21 ± 0,02			
$\langle n_{o} \rangle_{n_{+}}$	1,79 ± 0,08	-0,44±0,08			
$\langle n_{o} \rangle_{n_{-}}$	1, 85 ± 0 ,09	-0,37 ± 0,04			

Таблица 5

Таблица б

d d	٩°	¶+	n-
٩°	-0,12±0,10	-0,26±0,08	-0,24±0,07
N+	-	-0,51 ±0,07	0,34±0,05
N-	-	-	-0,98±0,09

Рис. 6. Зависимость среднего числа п-мезонов типа сот числа п-мезонов типа d. /Пунктирные кривые проведены от руки/.

Корреляционые моменты второго порядка

 $f_{2}^{cd} = \langle n_{c}n_{d} - \delta_{cd}n_{c} \rangle - \langle n_{c} \rangle \langle n_{d} \rangle$

для п--мезонов разных зарядов представлены в табл. 6.

Приведенные выше данные о зависимости $< n_c >_{n_d}$ и значения величин f $_2^{cd}$ дают основания для следующих выводов:

а/ наблюдается сильная положительная корреляция в выходах π^+ - и π^- -мезонов, обусловленная законом сохранения заряда;

б/ отрицательная корреляция между нейтральными и заряженными п-мезонами объясняется тем, что при данной энергии преобладающую роль играют кинематические корреляции;

в/ при данной энергии взаимно независимое образование наблюдается только для π° -мезонов.

В заключение сформулируем основные результаты работы в целом.

1/ Получен полный набор парциальных сечений π^- рвзаимодействий при 5 $\Gamma_{\partial}B/c$,и на его основе вычислены инклюзивные сечения рождения π^+ -, π^- , π^{\odot} мезонов. Вычислены параметры распределений по множественности для вторичных частиц разного типа.

2/ Проведена проверка статистической изоспин-независимой модели на обширном экспериментальном материале при 5 ГэВ/с. Показано, что основная доля экспериментальных данных удовлетворительно согласуется с предсказаниями этой модели.

3/ Получены распределения по множественности для π^+ , π^- , π° -мезонов, для заряженных и для всех вторичных частиц.

4/ Показано, что при 5 ГэВ/с наблюдается только качественное согласие формулы Чижевского-Рыбицкого с распределением по множественности заряженных частиц. Распределение по множественности всех вторичных частиц хорошо описывается этой формулой.

5/ Установлено, что распределение по множественности *п*^о-мезонов хорошо согласуется с распределением Пуассона.

Литература

- 1. В.Г.Гришин, П.Керачев. Препринт ОИЯИ, Р1-8288, Дубна, 1974.
- 2. А.В.Богомолов, Ю.А.Будагов и др. ПТЭ, 1, 61 / 1964/.
- 3. Ю.А.Будагов, Ш.Валкар, В.Б.Виноградов и др. ЯФ, 15, 1165 /1972/.
- 4. Ю.А.Будагов и др. Препринт ОИЯИ, Р1-6228, Дубна, 1972; Н.С.Амаглобели и др. Сообщение ОИЯИ, Р1-8699, Дубна, 1975; Н.С.Амаглобели и др. Препринт ОИЯИ, Р1-8793, Дубна, 1975; Ю.А.Будагов и др. Препринт ОИЯИ, Р1-6488, Дубна, 1972.
- 4. В.В.Глаголев, Е.С.Кузнецова и др. Препринт ОИЯИ, P1-6846, Дубна, 1972. Л.Абесалашвили и др. Препринт ОИЯИ, P1-4610, Дубна, 1969.
- E.Bracci, J.P.Droulez et al. Compilation of Cross Sections π⁻ and π⁺ Induced Reactions. CERN/HERA 72-1, Geneva, 1972.
- 6. F.Cemlus. Nuovo Cim. Suppl., 15, 402 /1960/.
- 7. В.Б.Виноградов и др. Препринт ОИЯИ, P1-5471, Дубна, 1970.
- 8. С.Биленький и др. УФН, 62, вып. 2, 1 /1957/.
- 9. O.Czyzewski, K.Rybicki. Nucl.Phys., B47, 633 /1972/.
- 10. E. De Wolf et al. Nucl. Phys., B87, 325 /1975/.
- 11. В.Г.Гришин. Препринт ОИЯИ, Р2-7032, Дубна, 1973.

Рукопись поступила в издательский отдел 16 апреля 1976 года.