-46

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

1-95-232

На правах рукописи УДК 539.172.17

БЕНДЖАЗА Авад Али

ПОИСК И ИЗУЧЕНИЕ РЕАКЦИЙ КОГЕРЕНТНОЙ ДИССОЦИАЦИИ ¹²С → 3α В ЯДЕРНОЙ ФОТОЭМУЛЬСИИ, ОБОГАЩЕННОЙ СВИНЦОМ

Специальность: 01.04.16 — физика ядра и элементарных частиц

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Дубна 1995

Работа выполнена в Лаборатории высоких энергий Объединенного института ядерных исследований и Таджикском Государственном университете

Научные руководителя:

доктор физико-математических наук, профессор

Г. М. Чернов

В.Л.Любошиц

кандидат физико-математических наук, доцент Д. А. Саломов

Официальные оппоненты:

доктор физико-математических наук В.А.Смирнитский

доктор физико-математических наук

Ведущая организация:

Физический институт им. П.Н.Лебедева АН России (Москва)

Защита состоится "______ 1995г. в ______ часов на заседании Специализированного совета Д-047.01.02 при Лаборатории высоких энергий Объединённого института ядерных исследований, г. Дубна Московской области, Лаборатория высоких энергий ОИЯИ, конференц-вал.

С диссертацией можно ознакомиться в библиотеке ЛВЭ ОИЯИ.

Автореферат разослан

Ученый секретарь Специализированного совета Ман Loref

М. Ф. Лихачев

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность исследований

Фрагментация (распад) возбужденных атомных ядер - основной источник информации об их внутренней структуре, волновых функциях различных его составляющих, уравнении состояния ядерной материи и т. д. Решению многих из этих вопросов благоприятствует малость энергии возбуждения фрагментирующего ядра, т.е. малость величины энергии-импульса, переданной ему в соударении частицей или ядром-партнером.

С другой стороны, в физике высоких энергий давно известен особый класс неупругих реакций, характеризующихся весьма малыми передаваемыми импульсами. Это – реакции когерентной диссоциации релятивистских частиц в столкновениях с ядрами, впервые предсказанные Померанчуком и Фейнбергом ещё в 50-е годы [1]. Малость передач импульса в реакциях этого типа определяется условием когерентности: 1/q > R (R – радиус ядра-партнера), что в сочетании со сравнительно высокой энергией "возбуждения", требуемой для возможности рождения новых частиц, приводит, как правило, к довольно высоким энергетическим порогам для этих реакций.

Недавно ([2] и ссылки в ней) идеи [1] были распространены на реакции мультифрагментации релятивистских ядер-снарядов. Настоящая работа – первое систематическое экспериментальное исследование, посвященное поиску и первоначальному изучению одного из простейших каналов такой реакции – когерентной диссоциации углерода на три d-частицы.

Цель работы

3. 100

К моменту начала настоящего исследования была известна единственна работа, в которой упоминалось о возможности когерентной диссоциации релятивистского ядра-снаряда, - работа [3], в которой наблюдалось около 40 "чистых" событий ¹²С ~ 3 α при р. =4,5 Гэв/с

> Contract Contracts Carage Contracts SHEMHOTENA

на нуклон в обычной фотозмульсии. Эта ситуация определила следующие цели нашей работы:

1. Поиск реакции ${}^{12}C \rightarrow 3d$ в эмульсии, обогащенной Рb.

2. Выполнение сравнительного анализа характеристик данной реакции в обычной и обогащенной Рь эмульсиях для:

а) установления когерентного механизма диссоциации углерода в три ${\mathcal A}$ -частицы;

б) получения сведений о динамике этих реакций (дифракционный, кулоновский механизмы), используя различный состав мишени;

в) получения информации об импульсных и корреляционных характеристиках \mathcal{A} -частиц из реакции 12 С $\Rightarrow 3\mathcal{A}$ и их зависимости от массового числа ядра-партнера.

Разумеется, использование фотометода при учете сравнительно небольшой величины сечения когерентной реакции ⁴²С → 3 лозволяет надеяться лишь на "разведывательный" характер исследования.

Научная новизна

Совокупность результатов исследования позволяет квалифицировать их как полученные впервые и, более того, практически единственные.

Научная и практическая ценность

Методология и результаты работы должны быть использованы при планировании дальнейших экспериментов по поиску и изучению реакций когерентной мультифрагментации релятивистских ядер-снарядов.

Аппробация работы и публикации

Результаты диссертационной работы докладывались на 17-ой

2

Международной конференции по твердотельным ядерным детекторам (Дубна, 24-28 августа 1994г.), 12-м Международном семинаре по проблемам физики высоких энергий (Дубна, 12-17 сентября 1994г.) и на научных семинарах ЛВЭ ОИЯИ. Основное содержание её опубликовано в пяти работах (список в конце автореферата).

Автор защищает следующие основные результаты

1. Со значительной степенью достоверности установлено наличие когерентного начала диссоциации ${}^{12}C \rightarrow 3 \,\mathcal{A}$ при высоких энергиях налетающего ядра. В области тяжелых ядер-мишеней, по-видимому, доминирует кулоновский механизм когерентного распада.

2. Выполнен сравнительный анализ импульсных и корреляционных характеристик \swarrow - частиц из когерентной реакции ${}^{12}C \rightarrow 3 \checkmark$ в обычной и обогащенной Рb фотоэмульсии в л.с.к. и системе покоя диссоциирующего ядра и впервые установлен ряд эмпирических закономерностей, свойственных этой реакции.

3. Обнаружена зависимость механизма распада от энергии возбуждения фрагментирующего ядра: при увеличении последней происходит переход от последовательных бинарных распадов ядра углерода к прямой мультифрагментации.

Структура и объём диссертации

Диссертационная работа состоит из введения, трех глав, заключения и списка литературы – всего 57 страниц, включая 14 рисунков, 4 таблицы и библиографию из 35 наименований.

содержание работы

Работа содержит довольно подробное <u>введение</u>; это связано с характером исследования, выполненного в значительной степени на

стыке двух проблем и являющегося первым систематическим поиском изучаемого процесса.

В первом разделе введения кратко описаны наиболее общие черты реакции когерентного неупругого рождения частиц в адрон-ядерных вваимодействиях. Обсуждены характерные черты этих реакций, подчеркнута малость передаваемых импульсов в них.

Во втором разделе введения отмечена популярная в последнее время в ядерной физике высоких энергий проблема мультифрагментации ядер-снарядов в ядро-ядерных столкновениях. Следуя [2], сформулирована идея о возможном когерентном характере (дифракционном или кулоновском) протекания этих реакций при высоких энергиях и рассмотрены некоторые общие кинематические соотношения для когерентных реакций мультифрагментации (диаграмма - на рис. 1). Аналогично случаю упругого дифракционного рассеяния среднее значение передаваемого фрагментирующему ядру продольного импульса должно быть аначительно меньше среднего значения передаваемого поперечного импульса, распределение по которому должно иметь вид

$$d \mathcal{G} / dq_{T}^{2} \sim \exp(-aq_{T}^{2}),$$

$$\langle q_{T} \rangle = (\mathcal{T} / 4a)^{1/2} \simeq \sqrt{\mathcal{T}} / (R_{A} + R)^{1/2}$$

Как и в физике частиц, когерентная реакция мультифрагментации обладает энергетическим порогом, его значение может быть оценено по формуле

 $p_{o}^{\min} \geq \frac{M_{A}}{M} B^{1/3} \Delta$,

где В - массовое число ядра-мишени, \mathcal{M} - масса пиона, $\Delta = M_{\leq F_1} - M_A$ - "дефект массы" по отношению к рассматриваемому каналу распада. Для ядра-мишени ²⁰⁸Pb, например, $p_0^{\min}(^{12}C \Rightarrow 3 \propto)^{\simeq}$ ~ 290 МэВ/с на нуклон, что позволяет априори исключить с большой вероятностью присутствие когерентного канала в ряде работ, посвященных изучению рассматриваемой реакции при невысоких ("циклотрон-

5

ных") энергиях.

В третьем разделе введения описаны постановка задачи и цель проводимого исследования, а также последовательность изложения материала в диссертации.

<u>В первой главе</u> диссертации представлены сведения об эксперименте.

Была исследована стопка ядерных фотоэмульсий типа БР-2, обогащенных свинцом в пропорции 1 атом Рь к 5 атомам Ag. Соли свинца вводились в жидкую эмульсию непосредственно перед изготовлением слоев.

Для сравнения использовались также данные эксперимента [3], выполненного в обычной эмульсии БР-2.

Обе эмульсионные стопки были облучены в пучках релятивистских ионов ¹²С при одном и том же р_о = 4.5 А ГэВ/с на синхрофазотроне ЛВЭ ОИЯИ. Ядерные составы обеих эмульсионных стопок приведены в табл. 1.

Таблица 1

തന്നറ-	Число ядер в 1 см ³ (×10 ²²)						
эмульсия	Н	С	N	0	Br	Ag	Pb
БР-2 (стандарт)	2.97	1.40	0. 37	1.08	1.03	1.03	-
BP-2 + Pb	3. 26	1.64	0. 28	1.49	0.76	0.76	0. 15

Отбор и измерения событий в обоих экспериментах были абсолютно идентичными. Отбирались "чистые" события – случаи с тремя хорошо идентифицированными \ll -частицами без каких-либо признаков возбуждения или развала мишени и каких-либо "рожденных" частиц. Поиск событий в обычной эмульсии (Ет) проведен исключительно методом "вдоль трека", в разбавленной солями Pb (Em+Pb) - частично "вдоль трека", частично (для увеличения статистики) - "по площади". Средний свободный пробег для искомых событий составил:

 $\lambda_{\rm Em} = 10.3 + \frac{1.9}{-1.4} \, \mu,$ $\lambda_{\rm Em+Pb} = 4.8 + \frac{1.8}{-1.1} \, \mu,$

т.е. оказался существенно разным. Полное число реакций "чистой" диссоциации ¹²С ⇒ 3 ∠ составило 44(Em) + 72(Em+Pb) = 116 событий. Для увеличения точности геометрические измерения во всех случаях проводились многократно.

Во второй главе диссертационной работы были рассмотрены основные характеристики сечения и одночастичные распределения по поперечным импульсам в л.с.к. и системе покоя диссоциирующего ядра углерода.

Полученные значения среднего свободного пробега для "чистых" событий 12 С \rightarrow 3 \checkmark соответствуют поперечным сечениям, равным 20+4 и 48+16 мбарн/среднее ядро эмульсии. Учитывая, что среднее значение массового числа <A> ядра-мишени при разбавлении эмульсии солями Рb уменьшается (это связано с происходящим при этом перераспределением плотности легких (С, N, O) и "тяжелых" (Br, Ag) ядер эмульсии в пользу первых; см. табл.1), это указывает на то, что на тяжелых ядрах-мишенях доминирует кулоновский механизм реакции. Этот вывод подтверждается и сравнением с недавно появившимися данными по реакции 12 С \rightarrow 3 \checkmark в пропановой пузырьковой камере; \bigcirc \checkmark 4. 3+0. 5 мбарн/ядро углерода (частное сообщение).

Подробно рассмотрены распределения по поперечным импульсам р₁ \mathscr{A} -частиц в отобранных в Ет и Ет+Рь реакциях 12 C \Rightarrow 3 \mathscr{A} .

В л.с.к. $p_{\rm T}$ -распределения для обоих случаях различаются : среднеквадратические значения cp2 равны 192+10 (Em) и 161+6 (Em+Pb) MaB/c (табл. 2). Кроме того оба распределения не согласуют-

7

ся с распределением Рэлея d $\bigcirc /dp_T^2 = \exp(-p_T^2/2 \bigcirc ^2)$, вытекающим из статистической теории прямого распада возбужденного ядра.

Таблица 2

Характеристика	Em	Em + Pb	
Число 🖌 - частиц	132	216	
<p<sub>T² >^{1/2}, МэВ/с</p<sub>	192 + 10	161 + 6	
A	-0.21 + 0.09	-0.20 + 0.07	
<р <mark>*</mark> 2 > ^{1/2} , МэВ/с	141 + 7	130 + 8	
A*	0.48 + 0.08	0.43 + 0.06	
B*	0.32 + 0.08	0.44 + 0.06	
<q<sub>1² >^{1/2}, MэB/c</q<sub>	383 + 42	281 + 19	

Отмечено, однако, что для корректных заключений о соответствии или несоответствии эмпирических и теоретических характеристик необходим переход к системе покоя фрагментирующего ядра, т.к. наблюдаемые в л.с.к. значения рт фрагментов искажены (увеличены) его поперечным движением (эффект "bounce off"). Наличие "переносного" поперечного импульса \vec{q}_{τ} , получаемого ядром ¹² С при его столкновении с мишенью, прямо доказывается в работе наличием азимутальной асимметрии вылета 🛛 -частиц в поперечной плоскости реакции, имеющей место в обоих экспериментах.

При предположении об отсутствии дополнительных нейтральных фрагментов в отобранных реакциях $\vec{q}_{T} = \sum_{j=1}^{3} \vec{p}_{Tj}$. Анализ распределений событий по $|\vec{q_{\tau}}|$ показал :

1. Значения $\langle q_T^2 \rangle$ для событий в Em и Em+Pb различны (табл. 2): для стопки, содержащей свинец, $\langle q_{\tau}^2 \rangle^{1/2}$ заметно меньше. Это - ещё одно свидетельство в пользу заключения о кулоновском механизме диссоциации на ядре Pb.

8

2. Распределения по q $\frac{2}{1}$ не противоречат рэлеевской форме, которая следует из экспоненциального вида зависимости d d/dt по передаваемому в соударении 4-импульсу, t' = t- $t^{\min}(\sum_{i=1}^{3}m_{di}) \cong q_1^2$ (рис. 2).

Значение величины "переносного" поперечного импульса q позволяет легко осуществить перевод поперечных импульсов в систему покоя фрагментирующего на З 📈 частицы ядра-снаряда:

$$\vec{r}_{i} \approx \vec{p}_{i} - \vec{q}_{i}/3 = \vec{p}_{i} - \sum_{i=1}^{3} \vec{p}_{i}/3$$

(здесь и далее звездочки соответствуют с. ц. и. ядра ¹²С).

Анализ p_T^* -распределений привел к следующим утверждениям: 1. Среднеквадратические $\langle p_T^{*2} \rangle^{1/2}$, как и ожидалось, заметно меньше, чем $(p_T^2)^{1/2}$, но в. отличие от последних, совпадают для обоих наборов реакций в пределах статистических погрешностей (табл. 2). Это, конечно, связано с различием в $\langle q_T^2 \rangle^{1/2}$.

2. Оба распределения по p_{T}^{*2} не согласуются с распределением Рэлея, обнаруживая "нестатистический" хвост больших р.*.

Были проанализированы также распределения (рис. 3) по парному азимутальному углу \mathcal{E}_{ij}^* =arccos (\tilde{p}_{1i}^* \tilde{p}_{1j}^* / p_{1i}^* p_{1j}^*) между поперечными импульсами \tilde{p}_{1i}^* и \tilde{p}_{1j}^* \measuredangle -частиц из одного события и значения коэффициентов азимутальной асимметрии A^* и коллинеарности B^* :

$$A^{*} = \left(\int_{0}^{\pi} (dN/d \mathcal{E}^{*}) d\mathcal{E}^{*} - \int_{0}^{\pi} (dN/d \mathcal{E}^{*}) d\mathcal{E}^{*}\right) \int_{0}^{\pi} (dN/d \mathcal{E}^{*}) d\mathcal{E}^{*}$$

$$B^{*} = \left(\int_{0}^{\pi} (dN/d \mathcal{E}^{*}) d\mathcal{E}^{*} + \int_{0}^{\pi} (dN/d \mathcal{E}^{*}) d\mathcal{E}^{*} - \int_{0}^{\pi} (dN/d \mathcal{E}^{*}) d\mathcal{E}^{*}\right) \int_{0}^{\pi} (dN/d \mathcal{E}^{*}) d\mathcal{E}^{*}$$

инклюзивного & *- распределения. Распределение по С ; также не описывается распределением, следующим из статистической теории прямого распада ¹²С > 3 ×, отличаясь от него статистически обеспеченной тенденцией к коллинеарности векторов поперечных импульсов 🖌 -частиц. 🐰

Важной характеристикой распада является распадная "темпера-

 $A + B \rightarrow \alpha + X$

(X = "все остальное"), являющихся, конечно, в подавляющем большинстве некогерентными.

Оцененные нами kT существенно меньше и энергии связи нуклонов в ядре углерода, что подчеркивает сильное влияние кластерной структуры ядра и соответствует предположению о когерентном характере рассматриваемой реакции.

Кажущимся логическим противоречием модели статистического распада, использованной для оценки его "температуры", являются отклонения p₁^{*} и \mathcal{E}_{ij}^* - распределений от форм, соответствующих этой модели. За это, в частности, могут быть ответственны следующие факторы:

а) наличие "каскадной" моды распада ядра углерода на три
 \sim -частицы, $^{12}{\rm C}$ > $^{8}{\rm Be}$ +
 \prec > 3
 \prec ;

б) возможное наличие углового момента у диссоциирующего ядра;

в) механизмы взаимодействия между
 состоянии (эффект тождественности);

г) механизмы взаимодействия между *X*-частицами и ядром мишенью (перерассеяние, кулоновское отталкивание).

В частности, первые два из перечисленных факторов могут привести к повышенной, в сравнении со статистической теорией прямого распада, коллинеарности векторов поперечных импульсов вторичных частиц в поперечной плоскости реакции.

<u>Третья-глава</u> диссертации посвящена анализу корреляционных характеристик и механизма реакции ${}^{12}C \rightarrow 3 \checkmark$.

Рис.3. Распределение dn/d& * в с.ц.м. для событий из обычной (Ет) и обогащенной РБ (Ет+РБ) стопки. Кривая – расчет по статистической теории. Для выяснения возможной роли "каскадного" варианта распада 12 С $\rightarrow 3$ \checkmark был выполнен расчет распределения d \subseteq /d \pounds_{ij}^{*} по методу Монте-Карло. Распады 12 С $\rightarrow {}^{8}$ Ве $+ \checkmark$ и 8 Ве $\Rightarrow 2 \checkmark$ предполагались происходящими в соответствии со статистической теорией быстрой фрагментации, как и для прямого распада 12 С $\rightarrow 3 \checkmark$. При предположении одинаковости "температур" обоих этапов каскадного распада значение коэффициента коллинеарности В* распределения d \leq /d \pounds_{ij}^{*} В*=0.18), оказалось почти совпадающим с соответствующим (В*=0.16) для прямого распада и противоречащим эмпирическим значениям В* (табл. 2) для обоих эмульсионных экспериментов.

Дальнейший прогресс в понимании причин коллинеарного разлета \mathscr{A} -частиц в изучаемой реакцити был достигнут при рассмотрении распределений по относительным пространственным углам Θ_{ij} между \mathscr{A} -частицами в л.с.к. или (что фактически одно и то же) распределений по эффективным массам пар \mathscr{A} -частиц из одного события. Примеры распределений по Θ_{ij} показаны на рис. 4.

Анализ показал, что:

а) Распределение d /dθ_{ij} обнаруживает два достаточно хорошо разделенных максимума при θ_{ij} ≈ 0.15 и θ_{ij} ≈ 0.5 град.
 б) Положение второго максимума совпадает с положением единс-

б) Положение второго максимума совпадает с положением единственного максимума, рассчитанного согласно статистической теории, распределения по Θ_{ij} (эти распределения практически совпадают как для прямого, так и каскадного случая, при одинаковых "температурах" обеих бинарных распадов, вариантов распада 12 С $\Rightarrow 3 \checkmark$), однако, его ширина существенно меньше расчетного. Что же касается первого из максимумов, - ни его положение, ни его ширина не воспроизводятся в рассмотриваемых вариантах статистической теории, таким образом, эти события однозначно идентифицируются как события с каскадным распадом через основное или слабовозбужденное состояние ядра ⁸ Ве.

Нижняя граница доли распадов ${}^{12}C \rightarrow 3\mathcal{L}$, протекающих по "каскадному" варианту, дает величину ~20%.

Интерпретация событий, попадающих в область второго максиму-

ма, значительно сложнее. Здесь, кроме наличия углового момента, могут играть роль каскадные распады, с образованием возбужденных состояний ядра ⁸ Ве с большими спинами (например, состояние 2^+ (2.9 M3B), 4^+ (11.4 M3B) и т.д.).

Для более уверенных заключений нужны:

а) количественная проработка всех возможных вариантов распада и

 б) больший статистический материал по рассматриваемым реакциям.

К аналогичным результатам приводит и рассмотрение роспределений по эффективной массе пар 🗸 -частиц.

Особый интерес представляет изучение механизма рассматриваемой реакции в зависимости от энергии возбуждения фрагментирующего ядра утлерода. В ряде работ, выполненных при небольших (десятки МэВ/нуклон) энергиях фрагментирующих ядер-снарядов, такая возможность была обнаружена для некоторых каналов распада: при небольших энергиях возбуждения доминируют последовательные бинарные распады, а при больших (kT>4 МэВ/нуклон) энергиях возбуждения - прямая мультифрагментация. В некоторых работах, однако, такая зависи мость не нашла экспериментального подтверждения.

Для поиска возможной зависимости механизма протекания изучаемой нами когерентной реакции ${}^{12}\text{C} \rightarrow 3 \checkmark$ от энергии возбуждения мы, имея, к сожалению, невысокую статистику событий, разделили все 116 событий на две группы примерно одинаковой численности: 57 событий с $\langle p_T^* \rangle <100$ МэВ/с и 59 событий с $\langle p_T^* \rangle >100$ МэВ/с (граничное вначение $\langle p_T^* \rangle =100$ МэВ/с в событии соответствует согласно статистической теории распада величине kT ≈ 2.5 МэВ).

Пример наличия сильной зависимости механизма распада от величины <kT> представлен на рис. 46, в. В табл. 3 показаны значения коэффициентов A^{*} и B^{*} для рассматриваемых подгрупп.

Таблица З

Рис.4. Распределение по относительным углам θ_{ij} , в л.с.к. между \ll -частицами из реакции ${}^{12}C \rightarrow 3 \ll$ при $p_0 = 4.5$ ГэВ/с/нуклон: а) – суммарное распределение; б) – подгрупп событий с $< p_T > < 100$ МэВ/с; в) – подгрупп событий с $< p_T > > 100$ МэВ/с. (значения $< p_T > -$ для с.ц.м. ядра ${}^{12}C$). Кривая – расчет по модели ФХГ.

14

Характеристика Набор Α* в* событий 12C > 3 d все 0.45 + 0.05 0.39 + 0.050.56 + 0.06 при kT ≼ 2.5 МэВ 0.30 + 0.070.23 + 0.07при kT ≥ 2.5 МэВ 0.50 + 0.06модель прямого распада 0.5 0.16

В результате анализа показано:

а) все "корреляционные" распределения (dG/d \mathcal{E}_{ij}^* , dG/d Θ_{ij} , dG/d M_{ij}) – существенно изменяют свою форму при переходе от малых <kT> к большим (пример – на рис. 46, в).

б) при kT > 2.5 МэВ все распределения и их численные характеристики не противоречат предположению о доминировании прямого канала мультифрагментации 12 C \rightarrow 3 \checkmark ,

в) при kT ≤ 2.5 МэВ все распределения и их численные характеристики противоречат предположению о прямом распаде 12 C $\rightarrow 3 \mathscr{L}$ или каскадному распаду с одинаковой "температурой" бинарных распадов. При этом kT данные согласуются с представлением о последовательных бинарных распадах ядра 12 C через промежуточное нестабильное состояние 8 Ве при малых энергиях возбуждения.

<u>В заключении</u> диссертации представлены краткая сводка основных результатов проведенного исследования.

1. Впервые выполнены поиск реакций когерентной диссоциации релятивистского ядра углерода на З \propto -частицы и сравнительный анализ данных по этой реакции, полученных в обычной и обогощенной ядрами Рb эмульсиях.

2. Совокупность данных по распаду ¹²С → 3∠ при р_о=4.5 ГэВ/с на нуклон в обычной и разбавленной солями Рb эмульсиях указывает

на наличие реакций когерентной диссоциации. В области легких и средних ядер-мишеней, по-видимому, доминирует дифракционный механизм, а для ядра Pb - кулоновский механизм реакции, т.к. средний свободный пробег для диссоциации ¹²C -> 3 d уменьшается при разбавлении эмульсии ядрами Pb примерно вдвое.

3. Распадные температуры ядра углерода в рассматриваемой реакции слабо зависят от массового числа ядра-партнера. Однако переход к кулоновскому механизму диссоциации сопровождается заметным уменьшением передаваемого ядру поперечного импульса, что приводит к различию в p_{τ} -спектрах распадных \checkmark -частиц в лаб. системе.

4. Эти температуры (kT~3.4+4.0 МэВ) значительно меньше таковых при обычной (некогерентной) мультифрагментации релятивистских ядер-снарядов и энергии связи нуклонов в распадающемся ядре.

5. Разлет *X*-частиц из реакции ¹²С → 3*X* в поперечной плоскости реакции обнаруживает тенденцию к коллинеарности.

6. Распределение $dN/d\Theta_{ij}$ обнаруживает два хорошо разделенных и сравнительно узких максимума при $\Theta_{ij} \approx 0.15$ и $\Theta_{ij} \approx 0.5$ град. Положение второго максимума совпадает с монсимумом расчетного (согласно статистической модели) распределения для обоих каналов распада 12 С $\rightarrow 3 \measuredangle$, однако его ширина существенно меньше; что же касается первого максимума, - ни его положение, ни ширина не воспроизводятся в статистической модели. Те же свойства обнаруживают и распределения по эффективным массам пар \measuredangle -частиц.

7. Обнаружены зависимости корреляционных характеристик \mathcal{A} частиц из реакции 12 С $\rightarrow 3\mathcal{A}$ от энергии возбуждения фрагментирующего ядра. Их совокупность позволяет утверждать, что имеет место переход от последовательных бинарных распадов ядра 12 С при небольших kT к прямой мультифрагментации при увеличении "температуры". Основное содержание диссертации опубликовано в работах:

1. Белага В. В., Бенджаза А. А. и др. Препринт ОИЯИ, Р1-94-285, Дубна, 1994.

2. Белага В. В., Бенджаза А. А. и др. ЯФ, 1995, т. 58, N1O (в печати). 3. Белага В. В., Бенджаза А. А. и др. Сообщ. ОИЯИ, Р1-95-40, Дубна, 1995.

4. Белага В.В., Бенджаза А.А. и др. Сообщ. ОИЯИ, Р1-95-41, Дубна, 1995.

5. Belaga V.V., Benjaza A.A. et al. 17-th International Conference on Nuclear Tracks in Solid, Dubna, 24-28 August, 1994, p.178.

Цитированная литература:

 Померанчук И.Я., Фейнберг Е.Л. ДАН СССР, 1953, т.93, с.439; Feinberg T.L., Pomeranchuk I. Ia. Suppl. Nuovo Cim., 1956, v.3, p.652.
 Chernov G.M. Coherent Multifragmentation of Relativistic Nuclei, Proc. of the XII ISHEPP, Dubna, Sept. 1994.
 Абдуразакова У.А. и др. ЯФ, 1984, т.39, с.272.

Рукопись поступила в издательский отдел 29 мая 1995 года.

17